Structural Dynamics of Harmful Content Dissemination on
WhatsApp

Abstract

WhatsApp has transformed communication, providing a cheaper
and more dynamic alternative to traditional SMS, especially through
its group chat feature, which enables collective discussions on a
wide range of topics. This has made WhatsApp an essential plat-
form for social mobilization, particularly during events such as
strikes and political campaigns, where rapid exchange of infor-
mation is crucial. However, this ease of communication has also
raised significant concerns about the spread of misinformation, hate
speech, and propaganda. In this study, we explore the dynamics of
the dissemination of harmful messages within WhatsApp groups,
focusing on their structural characteristics. Using a large dataset,
collected through data donation and focused on private groups,
covering 5,953 groups in India with more than 5,158,879 messages
spanning text, images and videos. Using techniques to robustly
reconstruct cascades, we track message propagation throughout
the dataset. Our results show that misinformation, hate speech, and
propaganda tend to have a significantly greater depth and breadth
of dissemination compared to normal messages. In addition, these
harmful messages are spread primarily through videos and images,
highlighting a distinctive dissemination pattern. However, modal-
ity alone cannot fully account for the structural differences in the
dissemination between harmful and normal messages, suggesting
that the distinct content of harmful messages plays a crucial role
in amplifying these differences. The findings highlight the critical
role of structural characteristics in the spread of these harmful mes-
sages, suggesting that strategies targeting structural characteristics
of message chains could be crucial in managing the dissemination
of such content on private messaging platforms.

1 Introduction

WhatsApp is the world’s most popular messaging app, with more
than 2.78 billion monthly active users in 180 countries, and is espe-
cially dominant in countries like India. In fact, more than 400 million
users in India rely on WhatsApp as their main means of communi-
cation, making it a central part of daily life for many. Despite its
vast user base, studying information dissemination on WhatsApp
remains challenging due to its end-to-end encryption, which limits
access to message content and makes it difficult to monitor and
track harmful material such as misinformation, hate speech, and
propaganda. Furthermore, WhatsApp’s group chat feature allows
large-scale targeting of specific audiences, further exacerbating the
challenges of controlling the spread of harmful content. Users can
easily create groups and quickly disseminate messages within these
groups, increasing the reach of these harmful messages.

Recent events have highlighted the severe real-world conse-
quences of widely distributed harmful messages on WhatsApp.
Since 2014, there has been a significant increase in mob violence,
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often triggered by misinformation spread through WhatsApp. For
example, in India, false rumors about child kidnappers circulated
on WhatsApp, leading to the deaths of more than two dozen in-
nocent people since April that year. In another case, in August
2018, false rumors about child snatchers on the loose prompted an
angry mob in Mexico to attack two men, resulting in their grievous-
bodily-harm murder. Beyond violence, WhatsApp has also become
a powerful tool for political manipulation. In India, where over 600
million people use WhatsApp, both the BJP! and the Congress?
have been accused of spreading false or misleading information to
influence the 900 million voters in the country, highlighting the
role of the platform in shaping public opinion [17].

Despite the urgency of understanding how harmful messages
spread on WhatsApp, tracking their diffusion remains particularly
challenging due to the end-to-end encryption of the platform. Un-
like public platforms such as X (formerly Twitter) or Facebook,
WhatsApp operates as a private communication network where
messages are encrypted upon sending and only decrypted upon
receipt. This encryption ensures that even WhatsApp itself cannot
access the content exchanged between users. Consequently, devel-
oping machine learning algorithms to detect the spread of harmful
or false information is virtually impossible, as the platform cannot
analyze the messages in transit. Without access to message content,
conventional content moderation techniques, as seen on public
platforms, cannot be applied. This limitation makes it extremely
difficult to monitor or control the dissemination of misinformation
on WhatsApp. Although this encryption improves user privacy, it
creates significant obstacles for tracking and mitigating the spread
of harmful content.

Given the impracticality of content-based moderation, What-
sApp has changed its focus toward the structural characteristics
of message dissemination to limit the spread of harmful messages.
A key strategy implemented by WhatsApp is to restrict the mes-
sage forwarding functionality. Specifically, each message can be
forwarded to a maximum of five groups, and if the message has
already been forwarded multiple times, it can only be forwarded to
a single group. Furthermore, once a message has been forwarded
more than five times, it is marked with the label “forwarded many
times” However, it remains an open question whether harmful
messages exhibit structural dissemination patterns that are distinct
from normal content. This issue is critical, as the effectiveness of
WhatsApp’s structural restrictions relies on the assumption that
harmful messages follow identifiable patterns, which can be tar-
geted by these restrictions.

To address the above problems, we built a large dataset compris-
ing 5,158,879 messages, including text, images, and videos, collected
from 5,953 WhatsApp groups, which is a key channel for the mass

!'The Bharatiya Janata Party is the ruling party of India and largest in terms of political
representation in the Parliament and state legislatures.

The Indian National Congress (INC), colloquially “the Congress”, is one of the oldest
political parties in India.


https://doi.org/XXXXXXX.XXXXXXX

WWW, 28 April-2 May, 2025, Sydney, Australia

dissemination of information on the platform. This dataset was col-
lected through a field study in India, where participants gave their
informed consent to share data from the WhatsApp groups that
they were comfortable with, ensuring ethical compliance. To track
and analyze the spread of messages, we used privacy-preserving
hashing techniques to identify multiple instances of the same mes-
sage, even with slight variations. For images and videos, we used
the PDQ hashing [3], and for text messages we used the locality-
sensitive hashing (LSH) [5]. These methods allowed us to detect
content variations, such as cropping or encoding changes, capturing
exact and modified versions of shared media.

Next, we categorized the dataset into four types: misinforma-
tion, hate speech, propaganda, and normal messages. Taking into
account the data donation-based sampling strategy, we model the
message cascades as generalized tree-like structures and estimate
key structural parameters, namely breadth b and depth h, to under-
stand the dissemination process. To ensure the robustness of our
conclusions, we explored two different cascade structures—influence
cascade and network cascade. The influence cascade assumes that
we observe the edges through which the information propagated
and reconstruct incomplete cascades using the algorithm developed
by Gomez-Rodriguez et al. [8]. The network cascade model assumes
that we only observe participating nodes, not the propagation edges,
and these edges are inferred based on the time sequence. Introduc-
ing a k-tree model for network cascades, we estimate the breadth
and depth parameters for each message category (misinformation,
hate speech, propaganda, and normal messages).

Our analysis revealed that harmful messages have significantly
greater breadth and depth compared to normal messages. In addi-
tion, these harmful messages are spread primarily through videos
and images. We also estimated the scale of dissemination for differ-
ent message types based on group sizes to derive population-level
estimates and found that harmful messages reach a significantly
larger audience compared to normal messages. These findings em-
phasize the need for further investigation into the structural as-
pects of message propagation, as they are key to developing more
effective strategies to limit the spread of harmful content on the
platform.

To our knowledge, this is the first study to construct a dataset
through data donations focusing on private WhatsApp groups, a
notoriously difficult area to study due to end-to-end encryption of
the platform. By analyzing the spread of harmful content, such as
misinformation, hate speech, and propaganda, we derive key struc-
tural parameters (breadth and depth) of information cascades using
state-of-the-art algorithms. This work provides unique insights
into how harmful content propagates more broadly and deeply
compared to normal messages.

2 Contributions and Related Work

Harmful messages on social networks are becoming a major issue,
with a significant body of research focused on public social media
platforms such as X (formerly Twitter) and Facebook. Grinberg
et al. [9] find that on Twitter, misinformation exposure is highly
concentrated, with just 1% of users encountering 80% of false infor-
mation. Similarly, Allen et al. [1] study vaccine misinformation on
Facebook and find that reports implying vaccines are harmful, not

being flagged by fact checkers, had a wider reach and significantly
reduced people’s willingness to get vaccinated. In another study,
Goel et al. [7] highlight the role of hatemongers in spreading hateful
speech, noting that these individuals tend to cluster together and
form stronger connections within social networks, thus amplify-
ing the spread of harmful content. Likewise, Hristakieva et al. [10]
indicate that propaganda spreads more effectively on social media
when coordinated between communities.

Although much of the existing research has focused on pub-
lic platforms like Twitter and Facebook, WhatsApp has recently
emerged as another powerful tool to spread harmful messages. How-
ever, research on WhatsApp is limited due to several constraints,
such as end-to-end encryption, which makes data collection and
analysis particularly challenging. To address these limitations, most
studies have focused on public WhatsApp groups. For example,
Garimella and Tyson [4] propose a generalized method for collect-
ing data from the public WhatsApp groups using Selenium scripts
to search for publicly available group invite links through Google.
Building on this method, Saha et al. [16] conduct the first large-
scale analysis of fear speech in public WhatsApp groups discussing
politics in India, and find that such messages spread rapidly and are
harder to detect due to their low toxicity. Similarly, Resende et al.
[13] examine the dissemination of information in political What-
sApp groups in Brazil, focusing on two social events: the national
truck drivers strike and the Brazilian presidential campaign. They
discover that misinformation, particularly in the form of images,
spreads widely between groups and across platforms during these
events. However, focusing solely on public groups is insufficient, as
it overlooks the private groups where much of WhatsApp’s typical
usage occurs. In response, this paper constructs a novel dataset that
emphasizes private groups, providing a more accurate reflection of
how harmful content spreads on WhatsApp.

Accurately identifying harmful messages remains a pressing is-
sue, as conventional machine learning techniques, though effective
on public platforms, are often not scalable for detecting harmful
content at a large scale on platforms like Twitter or Facebook, and
they are not applicable at all on private platforms like WhatsApp
due to end-to-end encryption and other privacy barriers. Given
these challenges, researchers have increasingly turned their atten-
tion to the structural characteristics of message dissemination as
an alternative approach to studying harmful content. Analyzing
the structural differences between harmful and regular messages
has become crucial in this context.

Studies consistently show that harmful messages spread more ef-
fectively than regular ones, highlighting clear structural differences.
For example, Vosoughi et al. [18] find that false news on Twitter
spreads faster, deeper and more broadly than true news. Similarly,
Mathew et al. [12] demonstrate that hateful speech travels farther,
spreads faster, and reaches a much wider audience than regular mes-
sages. Extending these findings, Maarouf et al. [11] analyze retweet
cascades of hateful speech on Twitter and discover that hateful
content forms cascades that are 3.5 times larger in size and have
1.2 times greater structural virality, defined as the average distance
between all pairs of nodes [6], compared to normal content.

In contrast, the structural characteristics of the dissemination of
information on WhatsApp are underexplored. To our knowledge,
only Caetano et al. [2] analyze attention cascades, which begin
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when a user introduces a topic in a message serving as a starting
point for the cascade. Other users contribute by replying either to
the original message or to subsequent replies, forming a chain of in-
teractions. Caetano et al. [2] find that attention cascades involving
false information in WhatsApp political groups tend to be deeper,
reach more users, and last longer than those in non-political groups.
However, attention cascades only account for information dissemi-
nation within a single group, overlooking cross-group transmission.
This cross-group transmission is often crucial for large-scale vi-
ral dissemination, where information spreads from one group to
another, amplifying its reach. To address this limitation, this pa-
per focuses on cross-group cascades and compares the structural
differences between various types of cascades.

However, cascades are complex dynamic entities, and recon-
structing the process of cross-group message dissemination is a
significant technical challenge in the study of WhatsApp cascades.
Several factors limit the reconstruction of cascades. First, it is im-
possible for anyone, including WhatsApp itself, to fully track the
entire message transmission process. As a result, we rely on sam-
pling methods, where specific groups are chosen, and by detecting
when messages appear in these groups, we attempt to infer the
structural characteristics of the complete information cascade. We
adopt a two-pronged approach: First, we reconstruct the trans-
mission process between the observed and sampled group nodes.
Second, after obtaining an incomplete, partially observed cascade,
we estimate the structural parameters of the complete cascade. To
address the first problem, we use two different methods to construct
two types of cascades: the influence cascade and the network
cascade. For the influence cascade, we use the algorithm proposed
by Gomez-Rodriguez et al. [8], which identifies the optimal net-
work and diffusion process to best explain the observed timings
of message appearances in some groups, accounting for external
effects and missing nodes, making it highly suitable for our study.
For the network cascade, a directed edge is drawn between the
nodes t and s if t performed the action before s. This allows us to
bypass the need for additional algorithms to infer the transmission
process between sampled nodes. However, this method sacrifices
some interpretability because it does not directly illustrate the mes-
sage transmission process as clearly as the influence cascade does.
In this study, the network cascade serves primarily to ensure the
robustness of our conclusions by relying solely on temporal order-
ing of the nodes without inferring detailed diffusion paths. For the
second problem, we employ the algorithm proposed by Sadikov
et al. [15]. The core idea is to calculate the expected properties of
the incomplete cascade, such as the number of nodes and edges,
based on the theoretical k-tree model and the sampling probabil-
ity (details in Section 4.1). By minimizing the differences between
these theoretical values and the actual observed data, the algorithm
accurately estimates the structural parameters of the tree model,
even when up to 90% of the data are missing. For completing the in-
fluence cascade, we combines two different algorithms proposed
by Gomez-Rodriguez et al. [8] and Sadikov et al. [15] to estimate
the structural parameters of the complete information cascade. To
complete the network cascade, we only use the second algorithm
proposed by Sadikov et al. [15]. Another approach frequently used
to reconstruct cascades is based on the Steiner tree problem, where
a minimum-cost tree is sought to span all reported nodes while
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preserving the order of observed timestamps [14, 19]. However,
this method is unsuitable for our scenario because of its limitations
in handling large amounts of missing data, which is a feature of
our dataset explained next.

3 Dataset

We collected a dataset of WhatsApp group messages through data
donations from 3,500 users in the northern Indian state of Uttar
Pradesh, corresponding to 5,953 WhatsApp groups. The data collec-
tion spanned from October 2023 to June 2024, yielding more than 5
million messages. To ensure a representative sample of villages and
capture diverse demographics, we carefully designed our sampling
method.

Sampling Procedure. Our sampling procedure involved randomly
selecting 10 districts within Uttar Pradesh and then randomly pick-
ing 10 villages from each chosen district. For each selected village,
we obtained census data to establish the baseline distribution of
the population in terms of age, caste, and religion.? Based on this
distribution, our survey team visited each village and sought the
consent of the participants until we filled the quotas correspond-
ing to the age, caste, and religion demographics. We opted for a
quota sampling method instead of a purely random sample due to
practical considerations related to the uptake of our data donation
process.

Data Donation Process. The on-the-ground protocol involved
surveyors reaching out to participants to obtain informed consent
and explain our data collection and anonymization protocols. We
employed a custom-built data donation tool to facilitate users in
donating their WhatsApp group data. Only groups with more than
five participants and a certain level of activity were eligible for
donation. Upon completion of the donation process, our tool col-
lected the following data: (i) All messages from the two months
preceding and the two months following the date of donation. (ii)
Anonymized contacts from the user’s phone contacts; and, (iii)
Anonymized group membership information.

Dataset Statistics. The collected dataset comprises over 5 million
messages from more than 5,900 WhatsApp groups during October
2023 to June 2024. The median group size was 104 members, in-
dicating that most groups were large and engaged in discussions
around political and religious identity, caste, region, and related
topics.

Annotations. We annotated a subset of messages to identify con-
tent that contains misinformation, hate speech, and political propa-
ganda. Specifically, we annotated all 2,019 pieces of content that
were marked as “forwarded many times" and shared during Oc-
tober to December 2023.* The annotations were performed by a
professional fact-checker who was well-versed with the content
and cultural context of the data. Out of the annotated messages, we
identified 401 instances of misinformation, 111 instances of hate
speech, and 116 instances of propaganda.’

3Due to practical limitations during our data donation pilot, we did not attempt to
obtain a sample representative of gender.

*We used definitions of misinformation, hate speech, and propaganda from the
Facebook Community Standards documents (https://transparency.meta.com/policies/
community-standards/misinformation).

5This sample of misinformation, hate and propaganda is not an ideal sample since
it does not cover all the time period of our messages. However, an annotation of
thousands of pieces of content is very tedious and time consuming, requires experts,
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Ethical Considerations. The data collection process was approved
by the Institutional Review Board (IRB) at multiple participating in-
stitutions (details anonymized). We took extreme care to minimize
the amount of data collected and to protect personal information.
Personal identifiers, including phone numbers, emails, and faces
in images, were anonymized before storage on our servers. Impor-
tantly, the data analyzed in this study did not include the content of
the messages; only metadata were analyzed to ensure the privacy
of participants.

4 Methodology

In this paper, we focus on the structural characteristics of informa-
tion dissemination, particularly the breadth and depth of cascades.
We assume that the information propagates in a tree-like structure
and attempt to reconstruct the dissemination process based on the
available data. A key challenge lies in the fact that our dataset does
not allow us to fully trace the entire information transmission pro-
cess. This limitation is almost inevitable when analyzing platforms
such as WhatsApp, where even the platform itself is unable to track
the entire path of information dissemination. Even if we assume
that the platform can trace all instances of the same content, the
information could originate from two distinct transmission paths,
with each source independently influenced by external factors.

As such, accurately reconstructing the entire cascade of informa-
tion transmission is almost impossible. Instead, we focus on provid-
ing reliable estimates for certain structural characteristics of the cas-
cades with missing data. Another challenge is that in our dataset we
can only track the time at which information reaches nodes, but we
do not know whether there are direct links between nodes. To over-
come this issue, we compared two different approaches. The first
approach involves estimating the probability that a directed edge
exists between two nodes based on the time information reaches
each node. This allows us to reconstruct an incomplete influence
cascade, from which we then estimate the structural characteristics
of the complete influence cascade. The second approach involves
the construction of a network cascade, where a directed edge is
drawn between nodes ¢t and s if ¢ has performed the action before s.
Then, on the basis of the incomplete network cascade, we estimate
the structural characteristics of the complete network cascade.

Ultimately, our goal is to draw reliable conclusions about the
structural features of information dissemination based on incom-
plete cascade data and to later understand the population-level
differences (e.g., how many people reached) between harmful mes-
sages, such as misinformation, hate speech and propaganda, and
normal information.

4.1 Influence Cascade Reconstruction

The influence cascade model focuses on influence relationships
within an action sequence. For example, an action sequence can be-
gin with an active node, followed by one of its neighbors, neighbors
of neighbors, etc. For the influence cascade, the primary challenge is
the lack of observable influence relationships between nodes, since
our dataset only provides information on when a message reaches

and does not scale well. We are in the process of collecting expert annotations for
the rest of our dataset and will update the manuscript with numbers that compare
misinformation on the entire dataset.

a group, without details on the diffusion process between groups.
To overcome this, we employ the methods of Gomez-Rodriguez
et al. [8] to reconstruct complete influence cascades from partial data.
The algorithm works by inferring the information diffusion process
from the observed times when nodes (or groups) adopt information.
A key assumption is that if information appears in two groups at
closely related times, it is more likely that a directed edge exists be-
tween them. Using this temporal proximity, the algorithm identifies
potential influence cascades. In addition, the algorithm accounts
for external effects and the presence of missing nodes, making it
suitable for reconstructing incomplete influence cascades more ac-
curately. To effectively apply this algorithm, if a message appears
multiple times within a group, we only consider the timestamp of
its first occurrence. Moreover, we excluded messages that appeared
only in a single group from the dataset, as such messages do not
contribute to the cascade structure. This ensures that the cascade
model reflects meaningful propagation between multiple groups.
Although this reconstruction is based on incomplete data, it still
allows us to examine key structural properties such as maximum
breadth and depth. These properties differ from the parameters b
and h used in the tree model, which are also referred to as breadth
and depth, but represent different aspects of the cascade. Specifically,
depth in this context is defined as the total number of edges from the
root node to the leaf node along the longest path in the incomplete
influence cascade, while breadth refers to the number of messages at
a particular depth level in the cascade. Our focus is on the maximum
breadth, defined as the largest number of messages at any depth
level. It is worth noting that the terms depth and breadth used here
differ slightly from the depth and breadth described in the tree
model later in the paper, and care should be taken to distinguish
between these two contexts to avoid potential confusion.

normal — hateful — misinfo — propaganda normal — hateful — misinfo — propaganda
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Figure 1: Comparison of CCDF for Breadth and Depth

By analyzing the maximum breadth and depth for each message
type, we aim to demonstrate that even in the sampled dataset, harm-
ful messages and normal messages exhibit significant differences
in their propagation patterns. To support this, we present comple-
mentary cumulative distribution function (CCDF) plots to compare
how different message types spread across groups. As shown in Fig-
ures la and 1b, harmful messages demonstrate significantly greater
breadth and depth compared to normal message types, indicating
their broader and deeper propagation between groups. In addition,
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propaganda messages exhibit greater breadth and depth compared
to misinformation. These findings highlight that, despite the limita-
tions of the sampled data, the observed structural differences are
robust and consistent.

Using this partially observed cascade dataset, the next step is
to develop an algorithm that can infer the properties of the entire
cascade tree within this network. In particular, given only a fraction
C’ of the complete cascade C, our goal is to estimate key properties
of the complete cascade, such as breadth, depth, or size, that is, the
total number of people exposed to the message. To accomplish this,
we use the method developed by [15]. We begin by assuming that
the complete information diffusion process follows a tree model.
Each node in the sampled cascade tree is included with a probability
of p. If the parameters of the tree model are known, then we can
estimate the properties of the complete cascade C, based on the
properties derived from the tree model. The parameters of the tree
model are determined by matching the theoretical values calculated
from the tree model with the measured values on the sampled
cascade C’. Specifically, a sampled tree, denoted as T'(p, b, h), is
generated with a depth h, a branching factor or breadth b, and
a sampling probability p. From this sampled tree, we can derive
theoretical expressions for certain properties that we then matched
to the observed data to estimate the values of the parameters b
and h. For example, the expected number of nodes in the sampled

tree T(p, b, h) is p bl;:_l;l , which is matched to the number of nodes
observed in the reconstructed cascades. For a list of all the matching
properties and detailed proofs, see [15].

In our case, the parameter p is the sampling probability of each
group, which we can calculate based on the data collection process
(as described in Section 3). Practically, we set the value of p to 0.02
(2%) given that we were sampling roughly 1% of a village and most
of the users provided almost 90% of the groups they had. Then,
we can estimate the breadth and depth by minimizing the sum of
errors between the values of these properties from our dataset and
those calculated from the theoretical sampled tree model T'(p, b, h).

4.2 Network Cascade Reconstruction

To further validate the reasonableness of the results of the influence
cascade reconstruction, we consider the network cascade model. In
contrast to the influence cascade model, the network cascades are
built on the scenario where only the action of a node s is known,
without clarity on who influenced that action. In this case, a directed
edge is drawn between nodes t and s if t performs the action before s,
which means that no algorithm is required to reconstruct diffusion
processes between the sampled groups. However, the sampled tree
model I'(p, b, h) is not appropriate for network cascades, as nodes
may now have more than one incoming edge. Consequently, the
network cascades form a directed acyclic graph (DAG) rather than
a tree. To address this issue, we need to replace the tree model
T(p, b, h) with a k-tree model T'(p, b, k, h). To convert the tree model
into a k-tree model, each node is supplemented with k — 1 extra
edges, linking it to its k — 1 nearest ancestors, beginning with
its grandparent. Figure 2 illustrates the tree model, the influence
cascade, the k-tree model, and the network cascade. Using the
k-tree model, we can estimate the three parameters b, h, and k
by minimizing the sum of errors between the observed values of
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specific properties in our dataset and those computed from the
theoretical k-tree model I'(p, b, k, h).

(a) Influence Cascade (b)Network Cascade

(c) Tree Model (d) k-Tree Model

Figure 2: (a) Influence cascade. (b) Network cascade. (c) Tree
model with breadth b = 2 and depth h = 2. (d) K-tree model
with breadth b = 2, number of parents k = 2 depth h = 2.

In Figure 2(a), for the influence cascade, the message first appears
in group r, and then someone from group r forwards it to group s.
Subsequently, someone from group v forwards the message to both
group v and group t. However, in Figure 2(b), we only know the time
at which the message appears in each group. In this case, we know
that t, < ts < t, = t;, so we connect the nodes in temporal order,
forming a network cascade. Compared to the influence network,
the red directed edges edge(r,v) and edge(r, t) are now spurious.
As a result, the network cascade becomes a DAG.

4.3 Population-Level Impact Estimation

Based on the estimates of the influence cascade and the network
cascade, we can derive the parameters required for both the com-
plete tree model and the k-tree model. This allows us to understand
the structural characteristics of specific types of information trans-
mission, such as whether misinformation has greater breadth or
depth compared to normal messages. Additionally, we can calculate
their respective reach, such as how many groups an average misin-
formation message is expected to propagate through. By analyzing
our dataset, we can also estimate the distribution of group sizes.
This enables us to combine the number of groups traversed by a
complete information cascade with the size of those groups, provid-
ing insights into the population-level impact of specific information
types, namely, how many people are ultimately affected by different
types of message.

5 Results

In this analysis, our objective is to understand the dissemination
patterns of different message types, including harmful messages
such as misinformation, hate speech, and propaganda, as well as
normal messages. We start by analyzing the structural characteris-
tics of message dissemination through two types of cascades: the
influence cascade and the network cascade. In addition, we investi-
gate the role of message modality, whether chat, image, or video, in
influencing dissemination patterns. Finally, we provide population-
level estimates to quantify the total number of people typically
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affected by each message type, combining group size data with the
average number of groups through which a message passes. This
comprehensive approach allows us to identify structural differences
in the spread of harmful content, offering key insights into their
broader societal impact.

5.1 Influence Cascade

Based on insights into structural characteristic differences from in-
complete influence cascades, we can extend the analysis to examine
the structural characteristics of complete influence cascades across
four message types: misinformation, hate speech, propaganda, and
normal messages. Specifically, we model the complete influence
cascade using a tree structure, characterized by two key parame-
ters: the branching factor, b (breadth), which indicates the average
number of connections a node generates, and the depth, h, which
represents the maximum number of layers in the tree, or how deep
the information travels. We assume that the incomplete influence
cascade observed in our dataset is a sampled version of the com-
plete cascade, with some connections or nodes missing due to the
limitations of the data. It is important to note that, when labeling
messages as harmful or not, privacy restrictions prevented us from
classifying all messages in the dataset. As a result, we focused only
on messages that were forwarded many times, specifically those
with a forwarding score of five or more. We applied our harmful
message classification to this subset of messages. Therefore, to en-
sure the robustness of our findings, we also further categorized
normal messages. We extracted normal messages with a forward-
ing score greater than or equal to five and assessed whether these
messages exhibit significant structural differences compared to
harmful messages. This extended classification allows us to draw
more general conclusions regarding the structural distinctions be-
tween harmful and normal messages within the context of complete
influence cascades.

Table 1: Mean and Standard Deviation of Parameters by Con-
tent Type

Content Type p op Hp oy

Hateful 3.78 0.575 4.89 0.244
Misinformation 3.68 0.579 4.86 0.261
Propaganda 3.82 0.660 4.92 0.298
Normal 2.85 0.388 4.50 0.167

Normal (F.S. >5) 3.37 0546 4.72 0.235

For each type of message, we estimate the values of b and h
to capture the spread dynamics within the influence cascade. The
results, shown in Table 1, indicate that harmful messages, including
misinformation, hate speech, and propaganda, exhibit higher values
of b and h compared to normal messages. This suggests that harmful
content spreads more broadly and deeply, reaching a wider audience
and traveling further into the network.

Specifically, while all harmful messages show higher breadth and
depth compared to normal messages and normal messages with a
forwarding score greater than or equal to five, there are notable
differences among the harmful message types. Propaganda has the
highest values for both breadth (b = 3.82) and depth (h = 4.92),

followed closely by hate speech with a breadth of b = 3.78 and
depth of h = 4.89. Misinformation, though still significantly larger
than normal messages, has slightly lower values (b = 3.68 and
h = 4.86). This suggests that, although misinformation spreads
widely, propaganda and hate speech tend to spread even more
broadly and deeply on WhatsApp.

These findings highlight the distinctive structural characteristics
of harmful messages in terms of their influence cascades, provid-
ing crucial insights into how these messages disseminate through
WhatsApp’s network.

5.2 Network Cascade

To ensure the robustness of our results, we also analyzed the fit of
the network cascade model. Unlike the influence cascade model,
where we infer the edges between nodes, in the network cascade,
we connect nodes solely based on the order in which they received
the information. This approach can result in nodes having multiple
incoming edges, transforming the cascade into a DAG rather than
a tree.

To address this complexity, we introduced the k-tree model. In
addition to estimating the parameters b (breadth) and h (depth), we
also incorporated the parameter k, which accounts for the multiple
incoming edges in the DAG structure. Specifically, each node is
supplemented with k — 1 additional edges, linking it to its k — 1
nearest ancestors, starting with its grandparent. This extension
allows us to better capture the structure of the network cascade.

Table 2: Mean and Standard Deviation of Parameters by Con-
tent Type

Content Type Hp op Hh oy i Ok

Hateful 3.46 0.711 5.29 0.520 1.00 0.000
Misinformation 3.21 0.383 5.18 0427 115 0315
Propaganda 3.58 0.684 5.17 0.349 1.00 0.000
Normal 277 0.259 4.58 0.348 1.00 0.050

Normal (F.S. >5) 3.08 0423 5.06 0.595 1.01 0.088

Our results, detailed in Table 2, show that the network cascade
analysis aligns with the trends observed in the influence cascade.
Harmful messages, including hateful, misinformation, and propa-
ganda, exhibit larger values of breadth and depth compared to
normal messages.

Specifically, hateful and propaganda messages show larger breadth
values (b = 3.46 and b = 3.58, respectively) compared to misinfor-
mation (b = 3.21), indicating that hateful and propaganda content
tends to spread to a broader range of groups. These variations
highlight distinct patterns in the way different types of harmful
messages are disseminated across the network, further confirming
the robustness of these structural characteristics in the dissemina-
tion of harmful messages.

Furthermore, the mean value of k remains close to 1 in the table,
which further validates the stability of the influence cascade model.
The introduction of the parameter k in the network cascade appears
to be redundant, as the structure often did not form a DAG but
instead continued to follow a tree-like transmission pattern.
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To further ensure the robustness of our results, we performed
Wilcoxon rank-sum tests on the breadth and depth of the influence
cascade and network cascade for the four different message types.
The results of the Wilcoxon rank-sum tests on the breadth and
depth of both the influence cascade and the network cascade for
the four message types are provided in the appendix. These results,
shown in Tables 4 and 5, confirm that the structural differences
in message dissemination between harmful and normal messages
are statistically significant in both cascades. Additionally, further
analysis reveals significant differences between propaganda and
misinformation, with propaganda demonstrating notably greater
breadth and depth.

5.3 The Impact of Message Modality on
Dissemination Patterns

In this section, we explore the reasons behind the broader dissemina-
tion of harmful messages—such as hateful content, misinformation,
and propaganda—compared to normal messages. Based on our anal-
ysis of the dataset, Figure 3 highlights significant variations in the
distribution of dissemination modalities (chat, image, video) across
different content types. For example, video is the dominant modality
for both hateful speech and political propaganda, comprising 88.9%
and 87.6% of their respective message distributions. In contrast,
normal content exhibits a more balanced distribution, with chat
accounting for 12.4%, image for 51%, and video for 36.6%. These
differences suggest that hateful speech and political propaganda
rely heavily on video dissemination, while misinformation is more
evenly split between image and video, with a smaller emphasis on
video. This distribution pattern suggests that the modality through
which messages are shared may influence the structure of their
transmission, potentially contributing to the wider reach observed
in harmful messages.

normal
o misinfo
< Modality
,'__, . chat
5 . image
g . video
(@] hateful

0.

o

0 0.25 0.50 0.75 1.
Proportion (%)

[=3

0

Figure 3: Proportion of different modality types within each
content type.

To test this hypothesis, we classified messages by modality (chat,
image, video) and analyzed the breadth and depth of both influence
and network cascades for each modality, as shown in Table 3. Our
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results indicate that video messages consistently exhibit a greater
breadth of dissemination compared to chat and image messages
in both cascade models. However, despite these differences, the
structural characteristics (breadth, depth, and complexity) between
chat, video, and image do not vary significantly. This suggests that
while modality may contribute to some differences in dissemination,
it alone is not sufficient to explain why harmful messages, such
as propaganda and hateful speech, spread more widely and deeply
than normal messages.

Table 3: Comparison of Influence Cascade and Network Cas-
cade for different modalities

Modality pp o0,  pn o g ok

Network chat 2.76 0.258 4.57 033 1.00 0.067
video 2.88 0.351 4.78 0.535 1.01 0.071
image 2.75 0.228 4.55 0.284 1.00 0.030

Influence chat 2.84 0.389 449 0.167 - -
video 3.06 0.524 4.59 0.225 - -

image 281 0332 448 0.142 - -

Therefore, the broader dissemination of harmful messages likely
results from a combination of factors beyond just modality, indi-
cating the need for further research to explore deeper drivers of
dissemination dynamics in harmful content.

5.4 Population-Level Estimation

In this final section, we estimate the population-level impact of dif-
ferent message types by determining how many people are typically
affected. From our dataset, we know the number of participants in
each WhatsApp group, allowing us to estimate the average group
size. Combined with the results from both the influence cascade
and network cascade analyses, where we can calculate the average
number of groups each type of message passes through, we can
approximate the total number of individuals exposed to each type
of message.

Figure 4 presents the distribution of the group sizes on a log-
arithmic scale. For our dataset, the mean group size is 81.25. By
multiplying the estimated average group size by the number of
groups that a message typically reaches based on both the influ-
ence cascade and the network cascade, we can approximate the
population-level impact for each type of message. This approach al-
lows us to quantify the broader societal impact of harmful messages,
such as misinformation, hate speech, and propaganda, compared to
normal messages. In Figure 5, we plot the distribution of population-
level estimates based on influence cascade parameters, showing the
number of individuals affected by different types of messages. The
corresponding figure for the network cascade is included in the
appendix. Our findings suggest that harmful messages, due to their
larger breadth and depth, tend to reach significantly more people
than normal messages. According to our estimates, harmful mes-
sages affect approximately five times more individuals than normal
messages. Even when focusing on normal messages with a forward-
ing score greater than or equal to five, harmful messages still reach
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Figure 4: Distribution of group sizes on a log scale. The red
dashed line represents the mean group size.

nearly twice the audience compared to these highly forwarded nor-
mal messages. At the same time, there are noticeable differences
among harmful messages. Propaganda and hateful speech tend
to reach a larger audience, while the impact of misinformation is
relatively smaller.
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Figure 5: Density of influenced population by content type
based on influence cascade. Vertical dashed lines indicate the
mean influenced population for each content type.

5.5 Demographic Analysis of Cascade
Structures

In this section, we build on the conclusions of this study by incor-
porating demographic features to further investigate the structural
properties of cascades. For each cascade, we analyzed the demo-
graphic characteristics of the individual who first initiated the
message, with the aim of determining whether there are structural
differences in cascades started by people with varying demographic
backgrounds. Specifically, we considered five demographic features:
caste, religion, income, education, and age. Detailed results are
provided in the appendix.

For most of the demographic features, we did not find any signif-
icant structural differences in the cascades. Although this suggests
that demographic factors may not have a substantial impact on
the breadth or depth of information cascades, further analysis is
required to draw definitive conclusions. Future studies could ex-
plore these factors more thoroughly to understand whether subtle
or context-specific effects could exist.

6 Discussion

In this paper, we study the structural dynamics of harmful content
dissemination in WhatsApp groups. We construct a new dataset
through data donations, covering 5,953 groups in India and con-
sisting of 5,158,879 messages that span text, images, and videos.
Using this large-scale dataset, we apply an algorithm developed by
Gomez-Rodriguez et al. [8] to reconstruct the dissemination paths
between the groups in our sampled data. We then use the algorithm
developed by Sadikov et al. [15] to estimate two key structural
parameters of the complete information diffusion process from
partially observed cascades in our sample: breadth and depth. Our
study reveals several key findings: First, harmful messages, such
as misinformation, hate speech, and propaganda, tend to have sig-
nificantly greater breadth and depth of dissemination compared to
normal messages. Furthermore, propaganda exhibits a wider and
deeper spread compared to misinformation. We also found that
the dissemination of harmful messages is primarily driven through
video and image formats. However, differences in message modal-
ity alone are insufficient to fully explain the significant structural
differences in the dissemination processes between harmful and
normal messages. Finally, we estimate the population-level impact
of harmful messages, finding that, on average, harmful messages
affect approximately five times more people than normal messages.

To our knowledge, this is the first effort to build a new dataset on
private groups based on data donation. However, we also acknowl-
edge certain limitations in the methodology used in this paper. First,
the second algorithm developed by [15] is based on several strong
assumptions, such as uniform sampling. In future work, our aim
is to extend this model to obtain more accurate population-level
estimates. In addition, we intend to further investigate the under-
lying factors that contribute to the structural differences between
harmful and normal messages. Finally, we hope to integrate de-
mographic data to explore how harmful messages affect different
demographic groups differently.
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A Wilcoxon Rank-Sum Test Results for the
Breadth and Depth of Influence and Network
Cascades

To ensure the robustness of our results, we performed one-sided
Wilcoxon rank sum tests to compare the breadth and depth of cas-
cades across different types of content for influence and network
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cascades, such as testing hypotheses whether the depth of misin-
formation is significantly greater than that of normal messages, as
shown in Tables 4 and 5. The results demonstrate that, for both
the influence and network cascades, there are significant structural
differences between harmful content types (such as misinformation,
hate speech, and propaganda) and normal messages.

For the breadth of cascades, the comparisons between misinfor-
mation, hate speech, propaganda, and normal messages consistently
show highly significant differences (p-value < 1e-5). Furthermore,
pairwise comparisons between propaganda and misinformation
reveal notable differences, indicating that even among harmful mes-
sages, the structural properties of dissemination vary significantly.

For the depth of cascades, similar patterns emerge. Harmful mes-
sages such as misinformation, hate speech, and propaganda exhibit
significantly deeper cascades compared to normal messages, with
p-values < le-5 in most comparisons. This indicates that harmful
messages penetrate the network more deeply than regular content.
In addition, the difference between propaganda and misinforma-
tion remains significant, further emphasizing the unique structural
dynamics between different types of harmful content.

These results reinforce the conclusion that harmful messages
spread not only more broadly, but also more deeply through net-
works compared to normal messages. Furthermore, the differences
between various types of harmful content suggest that certain types
of harmful content, such as propaganda, may be more effective at
reaching a broader and deeper audience than others, such as misin-
formation. The significance of these results across both influence
and network cascades ensures the robustness of our findings, con-
firming the reliability of our cascade reconstruction methods in
capturing the structural differences in message dissemination.

Table 4: Wilcoxon Rank-Sum Test Results for the Breadth of
Influence and Network Cascades

Content Type Comparison  Test Statistic p-value

731963991.00 < le-5
100649135.00 < le-5
132513655.00 < le-5
48347735.00 < le-5
6953780.00 < le-5
9256863.00 < le-5
114896.50 0.0215
158536.00 0.0006
20567.50 0.0563

Influence Misinfo - Normal
Hateful - Normal
Propa - Normal
Misinfo - Normal (F.S. > 5)
Hateful - Normal (F.S. > 5)
Propa - Normal (F.S. > 5)
Hateful - Misinfo
Propa - Misinfo
Propa - Hateful

752201958.00 < le-5
97630490.50 < le-5
136109337.50 < le-5
47824077.00 < le-5
6336116.00 < le-5
9144308.00 < le-5
111025.50 0.1064
169128.00 < le-5
22290.00 0.0008

Misinfo - Normal

Hateful - Normal

Propa - Normal

Misinfo - Normal (F.S. > 5)
Hateful - Normal (F.S. > 5)
Propa - Normal (F.S. > 5)
Hateful - Misinfo

Propa- Misinfo

Propa - Hateful

Network
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Table 5: Wilcoxon Rank-Sum Test Results for the Depth of
Influence and Network Cascades

Content Type Comparison  Test Statistic p-value
Influence Misinfo - Normal 731681544.00 < le-5
Hateful - Normal 100716850.00 < le-5
Propaganda - Normal 132021521.50 < le-5
Misinfo - Normal (F.S. > 5) 48331757.00 < le-5
Hateful - Normal (F.S. > 5)  6935536.00 < le-5
Propa- Normal (F.S. > 5) 9219857.50 < le-5
Hateful - Misinfo 107938.50 0.2661
Propaganda - Misinfo 159914.00 0.0002
Propaganda - Hateful 20582.50 0.0548
Network  Misinfo - Normal 760922645.00 < le-5
Hateful - Normal 104852797.50 < le-5
Propaganda - Normal 137310499.50 < le-5
Misinfo - Normal (F.S. > 5) 46107801.00 < le-5
Hateful - Normal (F.S. > 5)  6669863.00 < le-5
Propa- Normal (F.S. > 5) 8381746.50 < le-5
Hateful - Misinfo 110349.50 0.1335
Propaganda - Misinfo 148478.00 0.0685
Propaganda - Hateful 19495.00 0.2692

B Validation of Cascade Reconstruction Method
Using Forwarding Scores

In Table 6, we categorize the data based on the forwarding score, a
feature of WhatsApp that records the number of times a message
is forwarded. When a message is forwarded more than five times,
it is labeled "forwarded many times." Using this characteristic, we
reclassify the cascade dataset and apply the same reconstruction
algorithm to datasets with different forwarding scores. We expect
that as the forwarding score increases, the corresponding parame-
ters, breadth (b) and depth (h), will also increase. This would further
validate the accuracy of our method.

Table 6: Comparison Between Different Forwarding Scores
for Influence Cascade and Network Cascade

ES. wp  op  mn on Ok
Network 0 2.73 0.222 453 0.274 1.00 0.0393
1 2.73 0.194 4.52 0.237 1.00 0.0396
2 2.77 0.208 4.57 0.261 1.00 0.0000
3 2.82 0.252 4.64 0.358 1.01 0.1080
4 2.88 0.299 476 0.516 1.01 0.1070
>5 3.08 0426 5.06 0.591 1.01 0.1000
Influence 0 2.79 0326 4.47 0.140 - -
1 2.78 0.292 447 0.125 - -
2 2.83 0301 449 0.129 - -
3 292 0.421 4.53 0.180 - -
4 3.05 0.538 4.58 0.230 - -
>5 338 0550 4.73 0.237 - -

As shown in Table 6, both the breadth and depth increase as the
forwarding score increases. In particular, as the breadth and depth
grow, the scale of dissemination tends to increase exponentially.
Therefore, a higher forwarding score indicates a wider and more
extensive spread of the message. This observation provides further
validation of the effectiveness of our method. Although the forward-
ing score was not explicitly factored into our estimation process,
the estimated values of breadth and depth still successfully capture
the characteristic that messages forwarded more frequently tend to
propagate more widely and deeply. This consistency suggests that
our method effectively reflects the structural dynamics of message
dissemination, thereby enhancing its robustness and reliability in
real-world scenarios.

C Population-Level Estimates Based on
Network Cascade
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Figure 6: Density of influenced population by content type
based on network cascade. Vertical dashed lines indicate the
mean influenced population for each content type.

As shown in Figure 6, which provides population-level estimates
based on the network cascade, the number of individuals affected by
different types of messages is presented. The results are consistent
with those obtained from the influence cascade analysis, further
validating the robustness of our findings. Similarly to the influence
cascade, harmful messages demonstrate a significantly larger reach
compared to normal messages. Harmful messages, such as propa-
ganda and hateful speech, continue to affect more people, while
misinformation has a relatively smaller impact. This consistency
between the two models strengthens the reliability of our results
and highlights the structural differences in how harmful messages
are disseminated among different populations.
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D Comparison of Structural Parameters for
Influence and Network Cascades Across
Different Demographic Features

Table 7: Comparison of Structural Parameters for Influence
and Network Cascades Across Different Demographic Fea-
tures

Category Mo Ob Oh Mk Ok

Income (Network Cascade)

<25k 272 0.253 453 0340 1.00 0.048
>25k 271 0.195 448 0.233 1.00 0.042

Income (Influence Cascade)

<25k 279 0382 447 0.164 - -
>25k 273 0.292 4.44 0.1255 - -

Religion (Network Cascade)

Hinduism 272 0.248 453 0335 1.00 0.045
Islam 271 0.223 450 0.273 1.00 0.039

Religion (Influence Cascade)

Hinduism 2.78 0.380 4.47 0.163 - -
Islam 275 0330 446 0.141 - -

Caste (Network Cascade)

General 2.74 0.254 454 0344 1.00 0.054
Other 270 0.233 450 0304 1.00 0.034

Caste (Influence Cascade)

General 280 0.390 4.48 0.167 - -
Other 276 0352 446 0.151 - -

Education (Network Cascade)

<high school 2.71 0.234 4.51 0.315 1.00 0.038
>high school 2.72 0.253 4.53 0.331 1.00 0.049

Education (Influence Cascade)

<high school 2.77 0.366 4.46 0.157 - -
>high school 2.79 0.371 4.47 0.160 - -

Age (Network Cascade)

>25 274 0.252 454 0329 1.00 0.025
25-34 276 0.282 456 0354 1.00 0.064
>35 2.69 0.219 449 0307 1.00 0.045

Age (Influence Cascade)

>25 2.80 0.368 4.48 0.158 - -
25-34 284 0425 449 0.182 - -
>35 2.73 0344 445 0.148 - -
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