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Abstract: Cloud computing is leading to transformational 
changes with stringent requirements on usability, 
performance and security over very heterogeneous 
workloads.  Their run-time management requires realistic 
algorithms and techniques for sampling, measurement and 
characterization for load prediction.  Due to the expectation 
of elasticity, large swings in their demand are common, 
which cannot be modeled accurately based on raw measures 
such as the number of session requests, which show very 
large variability and poor auto-correlation.  We demonstrate 
the use of load prediction algorithms for cloud platforms, 
using a two-step approach of load trend tracking followed 
by load prediction, using cubic spline Interpolation, and 
hotspot detection algorithm for sudden spikes.  Such 
algorithms integrated into the autonomic management 
framework of a cloud platform can be used to ensure that 
the SaaS sessions, virtual desktops or VM pools are 
autonomically provisioned on demand, in an elastic manner.  
Results indicate that the algorithms are able to match 
representative SaaS load trends accurately.  This approach is 
suitable to support different load decision systems on cloud 
platforms with highly variable trends in demand, and is 
characterized by a moderate computational complexity 
compatible to run-time decisions. 
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INTRODUCTION 
Cloud computing is leading to fundamental, transformational 
changes in computing and IT.  Internet workloads supporting 
cloud computing have stringent requirements on usability, 
performance and security [1,2,3], which must be met in a 
globally distributed, multi-tenant environment used by 
multiple Concurrent Users (CCU).  Cloud workloads map to 
multiple tenants representing different organizations, co-
existing on the same physical (data center) infrastructure, 
sometimes in co-located VMs.  Such environments comprise 
of a heterogeneous mix of workloads, including remote 
virtual desktops, virtual application sessions, virtual servers 
with several connected virtual machines (VMs), graphically 
intense virtual applications, Rich Internet Applications and 
the usual Web-based applications.  Since all such SaaS 
sessions are ultimately accessed by the end-users via a Web 
browser, requests for any such session would count as a Web 
session request [3]. Run-time management of such cloud 
platforms requires realistic techniques for sampling, 

measurement and characterization of the expected 
workloads (load prediction).  History matching and 
modeling algorithms are necessary to iteratively evaluate 
and train the load prediction algorithms to improve the 
accuracy of prediction.  Due to the expectation of elasticity 
inherently built into Software as a Service (SaaS), large 
swings in demand, including sudden spikes known as ‘hot 
spots’, are to be expected.  To respond effectively, heavy 
replication of content, autonomic provisioning of VMs and 
virtual sessions may be applied just in time, across tenants. 

Raw measures such as the number of requests for sessions 
over time show very large variability even at different time 
scales [4,5,6]. As such, it is difficult to make run-time 
decisions on expected loads and hotspots based on such raw 
data.  We report on the adaptation and implementation of 
algorithms for predicting future resource loads under real-
time constraints [6] to Web-based cloud platforms. This 
method is based on a two-step approach that first aims to get 
a representative view of the load trend from measured raw 
data, and then applies a load prediction algorithm to load 
trends.  Given a set of timestamps and the corresponding 
loads at those timestamps, we predict the loads at any given 
timestamp (in the future), using cubic spline interpolation.  
This prediction can be applied separately to the different 
SaaS and PaaS session types as well as to a combined total 
session count, which appears as the number of Web session 
requests to a cloud platform.  Other resource measures such 
as the number of VMs on demand at any time, amount of 
RAM, disk space, CPU or network bandwidth may also be 
modeled using this approach, for load prediction on clouds. 

Using Runaware’s cloud platform as an example, we 
demonstrate how the proposed models can be applied to a 
cloud platform with the ability to autonomically respond to 
the predicted loads.  A separate algorithm is developed for 
the prediction of hot spots from the load prediction data.  
The algorithms are integrated into the autonomic 
management framework of the Runaware enterprise cloud 
platform for testing the methods, such that prepackaged VM 
pools can be created and deployed to ensure that the 
required SaaS sessions, virtual desktops or VM networks 
are provisioned on demand, in an elastic manner.   

WEB WORKLOAD CHARACTERIZATION 
It is expected that the Internet would be the global network 
to enable cloud computing and the Web browser its client 
interface on the end user devices to present the Software as a 
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Service (SaaS). It is not realistic to assume that the cloud 
workloads can be predicted using the Web workload 
characterization models.  The nature, economic value, size 
and duration of the cloud workloads (SaaS for example) are 
very different from those of typical Web applications.  Multi-
tenancy, elastic on-demand provisioning and ‘pay-per-use’ 
billing also are unique to cloud workloads.  However, Web 
workload characterization can serve as a good early 
surrogate for developing methods for load prediction and hot 
spot detection of cloud (SaaS) workloads, which are 
evolving and yet to be characterized.  Predicting the server 
loads have been a problem of high importance in past few 
years.  Many prediction techniques have been developed to 
address the same, but all of them have their limitations.  
There is no global prediction algorithm developed yet that 
works well for all type of patterns of load data.  So, one 
needs to make a choice for prediction algorithm depending 
upon the pattern their load data follows.  A review of the 
state of Web workload characterization efforts is presented in 
this section, to throw light on the efforts necessary for 
similarly characterizing the cloud workloads and to identify a 
method suitable for adoption to clouds. 
 
Lacort et al (2002) conducted a comprehensive Web 
workload characterization [7], collected over several weeks 
among a large (more than 50, 000 users and 122M requests) 
user base, confirming that graphic files are the most common 
files in the Web, comprising of more than 60% of the total 
Web requests.  File sizes among Web transactions showed an 
enormous dispersion, shown by a large standard deviation 
(305.7KB).  They also reported dramatic increase in the use 
of the Web in just one year, 49% more requests and 77% 
more bytes transferred, which is consistent with the global 
increase in the Internet use by more than 400% between 
2000 and 2010.  The noticeable increase of requests for 
dynamic pages (64.1% higher) against a decrease in the 
demand of static pages, (6.3% lower), showed that new 
generation of dynamic Web applications is gaining 
popularity.   This study serves as a good model for similar 
characterization studies needed for cloud workloads, whose 
global size and reach are growing rapidly as well. 
 
Arlitt and Williamson et al (1997, 2007) presented [8, 9] 
methods for Internet workload characterization, which 
focused on the document type and size distribution, 
document referencing behavior and geographical 
distribution of server requests.  Using six different data sets, 
they showed that the mean size of the documents transferred 
was between 5 - 21 KB, among which HTML and image 
documents accounted for more than 90% of the total 
requests.  Caching was shown to improve the server 
response, where caching to reduce the number of requests 
was more effective than caching to reduce number of bytes 
transferred.  Cloud workloads are likely to involve much 
larger file sizes; a similar characterization and caching 
analysis would be useful to designing cloud performance. 

Baryshnikov et al (2005) presented methods [10] for the 
prediction of Web server traffic congestion, targeting page 
request traffic in automobile and airline transportation 
networks and focusing on hot spot detection.  A hot spot is a 
sudden spike in traffic volume, also known as a flash crowd, 
a storm and the Slashdot effect.  This concept is very 
relevant to cloud workloads because satisfying the demand 
during hotspots is critical to satisfying the elasticity 
expectation.  Using auto-correlation functions and linear 
least squares extrapolation as the basis, [10] presented a 
hotspot detection method applied to typical Web session 
request data from events such as the Olympics.  Results 
indicate that even very simple prediction algorithms have a 
significant predictive power for hotspots, where accuracy is 
not critical, in the sense that false predictions are better than 
missing a hot-spot completely [10].  While this is true for 
Web apps, accurate prediction and response to hotspots is 
much more critical to cloud workloads serving business.      
 
Jung et al (2002) presented methods [11] for characterizing 
load patterns leading to flash events and denial of service 
attacks on Content Distribution Networks (CDN).  They 
proposed new ways of characterizing these events, such as 
rejecting the service request of the users under a DOS 
attack, and adaptive algorithms based on caching and 
dynamic delegation.  This work is relevant to cloud load 
prediction in identifying load data generated by genuine 
(legitimate) users and not attackers. 
 

Recently, Andreolini et al (2009) presented [12] an 
overview of dynamic management of virtualized app 
environments, for cloud applications.  This work focused on 
supporting VM migration decisions in a cloud environment, 
to answer questions such as which VMs should be migrated 
and when, using an algorithm which does not depend on the 
instantaneous behavior or average trends but uses load trend 
behavior, a better method to avoid false (inaccurate) 
prediction or alarms.  For example, if the CPU utilization 
more than 85% for only 2-3 seconds, no relacement 
measures are triggered.  This work is not directly relevant to 
the present cloud workload characterization, which is a 
prerequisite input needed for such VM migration decisions.   

From the literature review, it is clear that algorithms for load 
prediction, critical to the success of cloud computing, are 
not simple, deterministic functions of raw resource 
measures over time.  Elastic and autonomic management of 
cloud workloads of any kind requires response to spikes 
effectively, using just-in-time (JIT) replication of content, 
pre-preparation, retirement and migration of VMs etc.  Web 
workloads are characterized by large variability even at 
different time scales, poor auto correlation functions (ACF), 
heavy-tailed distributions and flash crowds [4,5,6,7].  Such 
trends lead to skewness of raw data, such that future 
resource measures appear as unrelated to the previous 
sample.  Deducing a clear trend about the load behavior of a 
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resource (e. g. find out whether a resource is offloading, 
overloading or stabilizing) is almost impossible with this 
type of workloads [6,8].  Popular linear auto regressive 
models (ARMA and ARIMA) modeling such workload 
trends require frequent updates of parameters in oscillatory 
systems.  Auto regressive models typically are created 
offline, applied to workloads characterized by smaller 
variability and high autocorrelation of load measures, an 
approach which is computationally costly and inadequate to 
support run-time decisions. 
 
Keeping these challenges in mind, Andreolini et al (2006) 
investigated load prediction methods for Internet based 
systems [6], where the raw data represented as number of 
Web session requests over time varies drastically, making 
any attempts to predict loads based on methods such as 
linear autoregression very difficult, given the poor auto-
correlation which characterizes Web workloads.  To address 
this, they proposed a two-step approach that first aims to get 
a representative view of the load trend from measured raw 
data, and then applies a load prediction algorithm to load 
trends. In the present work, we have adopted the two-step 
method [6] to cloud workload prediction, using a cubic 
spline for load tracking, detailed in the following section. 
 

METHOD DEVELOPMENT 
The two step approach consists of load tracking followed by 
load prediction.  The first step is focused on getting a 
representative view of load trend from raw data in the form 
of a load tracker, which a priori filters out noises in raw 
sequence of uncorrelated resource measures Si sampled over 
time ti.  A Moving Average (MA) is a finite impulse 
response filter to analyze a data set by creating a series of 
averages of different subsets of the full data set.  Given a 
series of numbers and a fixed subset size, MA is found by 
first taking the average of the first subset.  The fixed subset 
size is then shifted forward, creating a new subset of 
numbers, which is averaged.   This process is repeated over 
the entire data series.  The plot line connecting all the 
(fixed) averages is the MA.  Thus, MA is a set of numbers, 
each of which is the average of the corresponding subset of 
a larger set of data points.   Calculation of MA may also use 
unequal weights for each data value in the subset. MA is 
commonly used with time series data to smooth out spikes 
and highlight trends [13]. 
 
Load tracker (LT) algorithm takes as its input Sn(tn) for a 
sample size of n, gives a representation of the resource load 
conditions li at ti.  Applying LT multiply to a sequence of 
load values helps yield a regular trend of load conditions.  
SMA evaluates a Simple Moving Average for each Si over 
entire observation period.  Equal weight is assigned to every 
resource measure, basing on short-term MA (working on a 
small set).  As such SMA is more responsive to short 
variations, but causes increased oscillations. Long-term 
moving averages are able to smooth out all minor 

fluctuations, and tend to show only long-term trends.  SMA 
models tend to introduce a significant delay in the trend 
representation as the set size increases.  As such, an SMA 
based prediction cannot facilitate a JIT response to meet the 
elasticity requirements the cloud workloads demand. 
 
Exponential Moving Average (EMA) is the weighted mean 
of the n resource measures of the set Sn(ti), where the 
weights decrease exponentially.  For each time ti where i > 
n, the EMA-based load tracker is equal to: 

 
��� ��⃗�(	
)� =∝∗ �
 + (1−∝) ∗ ��� ��⃗�(	
��)�   (1) 

constant α = 2/n+1 is a smoothing factor. The EMA value is 
initialized to the arithmetical mean of the first n measures.  
As the last resource measures give a contribution higher 
than the first measures of the set Sn(ti), EMA load tracker is 
able to react rather quickly to changes in the resource load 
conditions similarly to a short-term SMA, with the 
advantage that EMA is subject to less oscillations than a 
short-term SMA [10].  However, even EMA load tracker 
introduces a delay in load trend prediction when the sample 
size Sn(ti) increases.  ARMA and ARIMA trackers are not 
suitable for cloud as they are strongly dependent on the 
considered resource metrics and workload characteristics.   
 
Andreolini [6] recommended the use of non-linear LT when 
the ACF of the data trend shows high fluctuations.  Lower-
order curves (degree < 3) do not react quickly to load 
changes, while higher-order curves (degree > 3) are 
unnecessarily complex, introduce undesired wiggles and are 
computationally too expensive for a run-time context.  
Based on [6], we use a cubic spline-based load tracker                  
LT(Sn(ti)), at time ti is defined as the cubic spline CSj(tj).  It 
is obtained through a subset of J control points from the 
vector Sn(ti) of the load measures having dimension n.  A 
cubic spline function CSj(tj) based on J control points, is a 
set of J − 1 piecewise third-order polynomials pj(t), where j 

 [1, J − 1], satisfying the following properties [14]: 
 
Property 1.  The control points are connected through third-
order polynomials: 

 

�    ����	�� = ��                                            � = 1, … , �
���(	) = ��(	)      	� < 	 < 	��� , � = 1, … , � �    (2) 

 
Property 2. To guarantee C2 continuity, 1st and 2nd order 
derivatives of pj(t) and pj+1(t) are set equal at time tj+1.   
Applying both properties leads to (where hj = tj+1 − tj): 
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The Z coefficients are solved by setting Z0 and Zn to 0, and: 
 

ℎ������� + 2�ℎ��� + ℎ��ℎ��� + ℎ����� = 6 ����� − ��ℎ�
− �� − ����ℎ��� � 

 
Load trackers based on moving average models compute a 
LT value at each resource measure, while the proposed LT 
based on the cubic spline function returns a new value after 
n resource measures. Further, CS responds well to changes 
independent of resource metrics and workloads. Cubic 
spline based LT provides high auto-correlation among 
values, using which even simple linear predictors can 
forecast the future behavior of resource load.  A load 
predictor LPk(Lq(ti)) takes as its input the set of q values                                     
and returns a real number that is the predicted value at time 
ti+k, where k > 0.  For cloud application, an LP takes as its 
input a set of LT values and returns a future LT value.  
Predicted window k is the size of the prediction interval, and 
the past time window q, where q is the size of LT vector            
Lq(ti), distance between the 1st and last LT value.  
Considering two load tracker values, the first li−q and the 
last li, load predictor is the line that intersects the two points 
(ti−q, li−q) and (ti, li) and returns a predicted value of the 
load tracker li+k at time ti+k [6]. 
 
The above methods for load prediction are suitable for 
prediction of Web-based cloud workloads over a period of 
several weeks to months.  In addition, it is also necessary to 
predict load patterns on a daily and hourly basis in 
production platforms.  For example, the cloud IT Production 
engineers managing a SaaS platform across global data 
centers will need to know how many workloads of which 
specific session type are to be expected by the hour on each 
day of the week, and also by the week day over a typical 
work week.  Load trends over such short periods typically 
do not exhibit wild fluctuations, as is the case with the 
seasonal trends [6].  A load prediction algorithm based on  
the generalized cubic equations such as y = a + bx + cx2 + 
dx, where y is no. of session requests x is hour of the day, 
was implemented for this purpose.  These algorithms also 
were implemented in C# .Net and integrated with the cloud 
platform’s management server rule engine, for testing. 
 

HOTSPOT DETECTION 
Hotspot is an abnormally high demand on a cloud resource 
over a short period of time.  Hotspot level H corresponds to 
the maximum capacity the platform can handle and meet the 
SLA [10, 15].  Cloud traffic is experiencing a hotspot at 
time t if the volume of traffic over the last Wd time slots 
satisfies the condition (obtain ri from load prediction): 

∑ " ≥ $ × %&
∈[*�-.,*]                (3)                  
 

This means the average request rate over [t-Wd, t] is at least 
H.  Working with IT Production, we define ranges for a 
number of load-resources measures Hn.  The platform is 

hotspot capable only when all of the set Hn are under control 
[10]. A period of ‘Advance Notice’t is defined for each load 
measure based on IT’s ability to respond the hotspot and 
absorb it following a protocol of best practices. An alarm is 
set if the traffic currently is in a hotspot, or if an 
extrapolation of the trend of advance notices in [t-Wd, t] 
shows that a hotspot will occur sometime in [t, t+tmax].  
Alarm is reset if neither of the conditions is currently 
satisfied [10]. Given that the diurnal, weekly and seasonal 
variations in resource demand exhibit very different trends, 
prediction of hotspots on the cloud platform is implemented 
at 3 granular scales (hour, week, season) separately, so the 
cloud IT staff can plan and respond at different time scales. 
 

IMPLEMENTATION 
Algorithms were implemented in C# .Net integrated with 
the Management Server Rule engine, which is a Microsoft 
Windows Work Flow (WF) based framework.  In this 
algorithm, input data (the actual load values available) is 
first processed by a Non-linear Load Tracker module, which 
uses cubic spline functions to generate a graphical trend of 
the data.  Using this graphical trend (which is a set of piece-
wise cubic mathematical functions, represented by model 
parameters), the load values between any two actual load 
points are calculated.  The result is a continuous curve 
representing the input data. 
 
Load predictor takes as its input a set of load tracker values 
and returns a future load tracker value.  Each predictor is 
characterized by a past window size.  Each predictor gives 
one prediction for a given future point on time line.  For 
example if past window is p, then predictor will take the 
tracked values at T(L[l]) and T(L[l-q]) (l being the index of 
last available load data),it draws a straight line joining these 
two points and extrapolate this line to predict the load value 
at the require d future point. Accuracy of this load predictor 
depends on the past window size chosen for prediction. This 
algorithm works well for near future predictions.  In cloud 
applications, resources are consumed on demand.  Services 
may go down when load suddenly increases because it is not 
always possible to allocate the demanded resources to an 
application. Even approximate future load estimates can 
address this problem enabling better prepared service. 
 
Class Extractinput is implemented to generate the input files 
from the database, a SQL data store which is continually 
populated with the cloud session request data over a period 
of several weeks.  The Input file contains data fields to 
represent Normalized Time Unit and the Actual Load Value.  
It should be noted that the ‘Actual Load Value’ is typically 
the number of SaaS session requests, but can also be any of 
the key cloud resource metrics such as RAM, CPU, disk 
usage and network bandwidth, for example.  This flexibility 
is valuable for cloud capacity planning. A Model class 
calculates the model parameters of cubic splines defined 
over the input data [12].  A Predict class implements the 
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function for prediction over a given range of time, and is 
integrated into the cloud platform’s autonomic deployment 
and management framework. 
 
User (typically a cloud IT Admin) enters window width to 
define two points on time axis (L and L-W) where L is the 
last actual load available and W is window width provided 
by user).  Then, the load prediction algorithm is applied 
using the tracked values within the window to predict the 
next immediate load at the required time.  Additional curve 
fitting routines were implemented for the prediction of 
hourly and daily variation in load trends, as explained, using 
the cubic equation model.    
 
Representative load input data were obtained from [5, 6 and 
8], after verifying that they are representative of typical 
SaaS workloads on Runaware’s cloud platform [3].  This 
platform enables SaaS-ifying Windows desktop applications 
using a system virtualization layer created on the physical 
(DC), a presentation virtualization layer to create remote 
application sessions using Citrix Xen App/Xen Desktop, an 
autonomic deployment and management middleware layer 
for  orchestrating the cloud workflows, and a Web interface 
layer to present the SaaS apps to the end users via the 
Internet,  via a variety of Web 2.0 technologies, including 
Adobe Flash, Java and AciveX clients.  Datasets 
representing hourly, daily and seasonal trends in an example 
resource measure (number of session requests over time) 
were adapted as inputs to the load predictions and hotspot 
detection algorithms so implemented.   

RESULTS AND DISCUSSION 
Shown in Figure 1 is the seasonal variation in the # session 
requests predicted using the 2 step Cubic Spline Load 
Tracker Load Predictor Implementation. The input dataset is 
based on [6].  It can be seen that the method predicts raw 

 
Figure 1. Load prediction of SaaS sessions using the 2-
step CS method 
 
SaaS session counts in the time (1000 – 2000) range well, 
based on the load data shown in the (0 – 1000) range.  
Application of this to two other data sets showed similarly 
reasonable agreement.  Even if the method is able to predict 
future load within a 25 – 75% margin of error, it would still 
be a valuable tool for capacity planning on cloud platforms 
during run time, in production. 
 

 
Figure 2. Load prediction of daily trends over a week  
 
Shown in Figure 2 are the daily variations in the # session 
requests predicted using the cubic equation method, and 
input data reported in [5].  As expected, the number of Web 
session requests on each work day (Mon – Fri) starts as low 
at midnight and peaks around midday.  The request count is 
smaller over the week-end.  Such trends can be modeled 
with reasonable accuracy using the cubic equation method, 
as can be seen from Fig. 2.  A useful way to apply this 
method is to model fit such available weekly data over 
several weeks, to obtain a range of values to be expected for 
the coefficients a, b and c in the cubic equation and then 
obtain their mean values using regression.  A reconstruction 
of the cubic equation trend would then yield a representative 
expected value for the load trends by day. 
 

 
Figure 3. Load prediction of hourly trends over a day 
 
Finally, shown in Figure 3 is daily variation in the # session 
requests predicted using the cubic equation method as well.  
Input data used in Figure 3 are from [5], collected over Web 
servers.  As in the case of the daily variations, the hourly 
data trend over a given day can also be modeled using this 
method.  Regression analysis of such hourly trends over 
data available from several days, for similar types of 
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workloads on the same (or similar) cloud platforms, would 
be useful for constructing expected daily trends as a 
guideline for capacity planning.   
 
Application of these prediction methods to the 
heterogeneous session requests among multiple tenants on a 
cloud platform is implemented using a simple arithmetic 
summation approach.  This is feasible because, 
mathematically, both the cubic spline based predictions of 
the seasonal loads and the cubic equation based prediction 
of hourly and daily loads are amenable to a simple 
arithmetic summation, when a raw data measure trend needs 
to be apportioned among the multiple measure types it is 
comprised of.  For example, consider M different tenants 
(i.e., cloud customer orgs) - each with a particular type of 
SaaS or PaaS workload (session type), all being served by 
the same single cloud vendor’s platform such as the 
Runaware platform.  All such session requests are received 
ultimately as a pool of session requests over time, which can 
be directly modeled as in Fig. 1 – 3.  In addition, the cloud 
management server also keeps track of the number of 
session requests by tenant and session type, using cookies, 
tenant IDs or IP addresses.  As such, prediction trends can 
also be developed as shown in Fig. 1 – 3, for each session 
type and tenant, which would sum to yield the global cloud 
platform load predictions at any given time.  These trends 
are important inputs into dynamic capacity planning, which 
would be very different for each session type, however.  For 
example, a SaaS session to IOPS and compute intensive 
workloads would need high capacity VMs, unlike SaaS 
sessions to email or CRM.  
 
Limitations: These methods predict the load at points not 
very far from the latest available points.  For example, if 
raw data measures up to time unit 2000 are available, one 
can only predict up to 2005-2010 with reasonable accuracy.  
Predicted value depends upon the window width chosen.  
For example, if the window width is say W, the algorithm 
will make use of (L to L-W) actual values to predict the load, 
where L is the last actual data point available. 

 
CONCLUSIONS 

Load prediction algorithms were adopted for use on a 
typical global cloud platform, by first implementing a load 
tracker function to get a representative view of the load 
trend from measured raw data, and then applying a load 
prediction algorithm to load trends, for predicting future 
resource loads under real-time constraints.  Given a set of 
timestamps and the corresponding loads at those 
timestamps, we predict the loads at any given timestamp (in 
the future), using cubic spline interpolation.  This prediction 
can be applied separately to the 8 different session types as 
well as to a combined session count (i.e., number of Web 
session requests).  It is applicable to a host of other load 
measures (e. g. system’s CPU, disk and memory; Network 
and DB metrics etc.)  A separate algorithm is developed for 

hot spot prediction from the load prediction data.   
Implementation is integrated into the cloud autonomic 
management framework, to aid runtime decisions for 
deploying prepackaged VM pools, virtual sessions and other 
resources on demand, in an elastic manner.   Results 
indicate that the autonomic management framework is able 
to respond to both synthetic and real-world load trends 
accurately.  This approach is suitable to support different 
decision systems on cloud platforms, even for highly 
variable workloads, and is characterized by a computational 
complexity that is compatible to run-time decisions. 
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