
Load Prediction and Hot Spot Detection Models for Autonomic Cloud Computing

Prasad Saripalli, GVR Kiran, Ravi Shankar R, Harish Narware and Nitin Bindal
Runaware Inc.

Coral Springs, FL, USA
prasadsa@runaware.com

Abstract: Cloud computing is leading to transformational
changes with stringent requirements on usability,
performance and security over very heterogeneous
workloads. Their run-time management requires realistic
algorithms and techniques for sampling, measurement and
characterization for load prediction. Due to the expectation
of elasticity, large swings in their demand are common,
which cannot be modeled accurately based on raw measures
such as the number of session requests, which show very
large variability and poor auto-correlation. We demonstrate
the use of load prediction algorithms for cloud platforms,
using a two-step approach of load trend tracking followed
by load prediction, using cubic spline Interpolation, and
hotspot detection algorithm for sudden spikes. Such
algorithms integrated into the autonomic management
framework of a cloud platform can be used to ensure that
the SaaS sessions, virtual desktops or VM pools are
autonomically provisioned on demand, in an elastic manner.
Results indicate that the algorithms are able to match
representative SaaS load trends accurately. This approach is
suitable to support different load decision systems on cloud
platforms with highly variable trends in demand, and is
characterized by a moderate computational complexity
compatible to run-time decisions.

Keywords: Cloud Computing; Elasticity; Load Prediction;
Hotspot Detection; Slashdot; Autonomic Management

INTRODUCTION
Cloud computing is leading to fundamental, transformational
changes in computing and IT. Internet workloads supporting
cloud computing have stringent requirements on usability,
performance and security [1,2,3], which must be met in a
globally distributed, multi-tenant environment used by
multiple Concurrent Users (CCU). Cloud workloads map to
multiple tenants representing different organizations, co-
existing on the same physical (data center) infrastructure,
sometimes in co-located VMs. Such environments comprise
of a heterogeneous mix of workloads, including remote
virtual desktops, virtual application sessions, virtual servers
with several connected virtual machines (VMs), graphically
intense virtual applications, Rich Internet Applications and
the usual Web-based applications. Since all such SaaS
sessions are ultimately accessed by the end-users via a Web
browser, requests for any such session would count as a Web
session request [3]. Run-time management of such cloud
platforms requires realistic techniques for sampling,

measurement and characterization of the expected
workloads (load prediction). History matching and
modeling algorithms are necessary to iteratively evaluate
and train the load prediction algorithms to improve the
accuracy of prediction. Due to the expectation of elasticity
inherently built into Software as a Service (SaaS), large
swings in demand, including sudden spikes known as ‘hot
spots’, are to be expected. To respond effectively, heavy
replication of content, autonomic provisioning of VMs and
virtual sessions may be applied just in time, across tenants.

Raw measures such as the number of requests for sessions
over time show very large variability even at different time
scales [4,5,6]. As such, it is difficult to make run-time
decisions on expected loads and hotspots based on such raw
data. We report on the adaptation and implementation of
algorithms for predicting future resource loads under real-
time constraints [6] to Web-based cloud platforms. This
method is based on a two-step approach that first aims to get
a representative view of the load trend from measured raw
data, and then applies a load prediction algorithm to load
trends. Given a set of timestamps and the corresponding
loads at those timestamps, we predict the loads at any given
timestamp (in the future), using cubic spline interpolation.
This prediction can be applied separately to the different
SaaS and PaaS session types as well as to a combined total
session count, which appears as the number of Web session
requests to a cloud platform. Other resource measures such
as the number of VMs on demand at any time, amount of
RAM, disk space, CPU or network bandwidth may also be
modeled using this approach, for load prediction on clouds.

Using Runaware’s cloud platform as an example, we
demonstrate how the proposed models can be applied to a
cloud platform with the ability to autonomically respond to
the predicted loads. A separate algorithm is developed for
the prediction of hot spots from the load prediction data.
The algorithms are integrated into the autonomic
management framework of the Runaware enterprise cloud
platform for testing the methods, such that prepackaged VM
pools can be created and deployed to ensure that the
required SaaS sessions, virtual desktops or VM networks
are provisioned on demand, in an elastic manner.

WEB WORKLOAD CHARACTERIZATION
It is expected that the Internet would be the global network
to enable cloud computing and the Web browser its client
interface on the end user devices to present the Software as a

2011 Fourth IEEE International Conference on Utility and Cloud Computing

978-0-7695-4592-9/11 $26.00 © 2011 IEEE

DOI 10.1109/UCC.2011.66

397

Service (SaaS). It is not realistic to assume that the cloud
workloads can be predicted using the Web workload
characterization models. The nature, economic value, size
and duration of the cloud workloads (SaaS for example) are
very different from those of typical Web applications. Multi-
tenancy, elastic on-demand provisioning and ‘pay-per-use’
billing also are unique to cloud workloads. However, Web
workload characterization can serve as a good early
surrogate for developing methods for load prediction and hot
spot detection of cloud (SaaS) workloads, which are
evolving and yet to be characterized. Predicting the server
loads have been a problem of high importance in past few
years. Many prediction techniques have been developed to
address the same, but all of them have their limitations.
There is no global prediction algorithm developed yet that
works well for all type of patterns of load data. So, one
needs to make a choice for prediction algorithm depending
upon the pattern their load data follows. A review of the
state of Web workload characterization efforts is presented in
this section, to throw light on the efforts necessary for
similarly characterizing the cloud workloads and to identify a
method suitable for adoption to clouds.

Lacort et al (2002) conducted a comprehensive Web
workload characterization [7], collected over several weeks
among a large (more than 50, 000 users and 122M requests)
user base, confirming that graphic files are the most common
files in the Web, comprising of more than 60% of the total
Web requests. File sizes among Web transactions showed an
enormous dispersion, shown by a large standard deviation
(305.7KB). They also reported dramatic increase in the use
of the Web in just one year, 49% more requests and 77%
more bytes transferred, which is consistent with the global
increase in the Internet use by more than 400% between
2000 and 2010. The noticeable increase of requests for
dynamic pages (64.1% higher) against a decrease in the
demand of static pages, (6.3% lower), showed that new
generation of dynamic Web applications is gaining
popularity. This study serves as a good model for similar
characterization studies needed for cloud workloads, whose
global size and reach are growing rapidly as well.

Arlitt and Williamson et al (1997, 2007) presented [8, 9]
methods for Internet workload characterization, which
focused on the document type and size distribution,
document referencing behavior and geographical
distribution of server requests. Using six different data sets,
they showed that the mean size of the documents transferred
was between 5 - 21 KB, among which HTML and image
documents accounted for more than 90% of the total
requests. Caching was shown to improve the server
response, where caching to reduce the number of requests
was more effective than caching to reduce number of bytes
transferred. Cloud workloads are likely to involve much
larger file sizes; a similar characterization and caching
analysis would be useful to designing cloud performance.

Baryshnikov et al (2005) presented methods [10] for the
prediction of Web server traffic congestion, targeting page
request traffic in automobile and airline transportation
networks and focusing on hot spot detection. A hot spot is a
sudden spike in traffic volume, also known as a flash crowd,
a storm and the Slashdot effect. This concept is very
relevant to cloud workloads because satisfying the demand
during hotspots is critical to satisfying the elasticity
expectation. Using auto-correlation functions and linear
least squares extrapolation as the basis, [10] presented a
hotspot detection method applied to typical Web session
request data from events such as the Olympics. Results
indicate that even very simple prediction algorithms have a
significant predictive power for hotspots, where accuracy is
not critical, in the sense that false predictions are better than
missing a hot-spot completely [10]. While this is true for
Web apps, accurate prediction and response to hotspots is
much more critical to cloud workloads serving business.

Jung et al (2002) presented methods [11] for characterizing
load patterns leading to flash events and denial of service
attacks on Content Distribution Networks (CDN). They
proposed new ways of characterizing these events, such as
rejecting the service request of the users under a DOS
attack, and adaptive algorithms based on caching and
dynamic delegation. This work is relevant to cloud load
prediction in identifying load data generated by genuine
(legitimate) users and not attackers.

Recently, Andreolini et al (2009) presented [12] an
overview of dynamic management of virtualized app
environments, for cloud applications. This work focused on
supporting VM migration decisions in a cloud environment,
to answer questions such as which VMs should be migrated
and when, using an algorithm which does not depend on the
instantaneous behavior or average trends but uses load trend
behavior, a better method to avoid false (inaccurate)
prediction or alarms. For example, if the CPU utilization
more than 85% for only 2-3 seconds, no relacement
measures are triggered. This work is not directly relevant to
the present cloud workload characterization, which is a
prerequisite input needed for such VM migration decisions.

From the literature review, it is clear that algorithms for load
prediction, critical to the success of cloud computing, are
not simple, deterministic functions of raw resource
measures over time. Elastic and autonomic management of
cloud workloads of any kind requires response to spikes
effectively, using just-in-time (JIT) replication of content,
pre-preparation, retirement and migration of VMs etc. Web
workloads are characterized by large variability even at
different time scales, poor auto correlation functions (ACF),
heavy-tailed distributions and flash crowds [4,5,6,7]. Such
trends lead to skewness of raw data, such that future
resource measures appear as unrelated to the previous
sample. Deducing a clear trend about the load behavior of a

398

resource (e. g. find out whether a resource is offloading,
overloading or stabilizing) is almost impossible with this
type of workloads [6,8]. Popular linear auto regressive
models (ARMA and ARIMA) modeling such workload
trends require frequent updates of parameters in oscillatory
systems. Auto regressive models typically are created
offline, applied to workloads characterized by smaller
variability and high autocorrelation of load measures, an
approach which is computationally costly and inadequate to
support run-time decisions.

Keeping these challenges in mind, Andreolini et al (2006)
investigated load prediction methods for Internet based
systems [6], where the raw data represented as number of
Web session requests over time varies drastically, making
any attempts to predict loads based on methods such as
linear autoregression very difficult, given the poor auto-
correlation which characterizes Web workloads. To address
this, they proposed a two-step approach that first aims to get
a representative view of the load trend from measured raw
data, and then applies a load prediction algorithm to load
trends. In the present work, we have adopted the two-step
method [6] to cloud workload prediction, using a cubic
spline for load tracking, detailed in the following section.

METHOD DEVELOPMENT
The two step approach consists of load tracking followed by
load prediction. The first step is focused on getting a
representative view of load trend from raw data in the form
of a load tracker, which a priori filters out noises in raw
sequence of uncorrelated resource measures Si sampled over
time ti. A Moving Average (MA) is a finite impulse
response filter to analyze a data set by creating a series of
averages of different subsets of the full data set. Given a
series of numbers and a fixed subset size, MA is found by
first taking the average of the first subset. The fixed subset
size is then shifted forward, creating a new subset of
numbers, which is averaged. This process is repeated over
the entire data series. The plot line connecting all the
(fixed) averages is the MA. Thus, MA is a set of numbers,
each of which is the average of the corresponding subset of
a larger set of data points. Calculation of MA may also use
unequal weights for each data value in the subset. MA is
commonly used with time series data to smooth out spikes
and highlight trends [13].

Load tracker (LT) algorithm takes as its input Sn(tn) for a
sample size of n, gives a representation of the resource load
conditions li at ti. Applying LT multiply to a sequence of
load values helps yield a regular trend of load conditions.
SMA evaluates a Simple Moving Average for each Si over
entire observation period. Equal weight is assigned to every
resource measure, basing on short-term MA (working on a
small set). As such SMA is more responsive to short
variations, but causes increased oscillations. Long-term
moving averages are able to smooth out all minor

fluctuations, and tend to show only long-term trends. SMA
models tend to introduce a significant delay in the trend
representation as the set size increases. As such, an SMA
based prediction cannot facilitate a JIT response to meet the
elasticity requirements the cloud workloads demand.

Exponential Moving Average (EMA) is the weighted mean
of the n resource measures of the set Sn(ti), where the
weights decrease exponentially. For each time ti where i >
n, the EMA-based load tracker is equal to:

��� ��⃗�(
)� =∝∗ �
 + (1−∝) ∗ ��� ��⃗�(
��)� (1)

constant α = 2/n+1 is a smoothing factor. The EMA value is
initialized to the arithmetical mean of the first n measures.
As the last resource measures give a contribution higher
than the first measures of the set Sn(ti), EMA load tracker is
able to react rather quickly to changes in the resource load
conditions similarly to a short-term SMA, with the
advantage that EMA is subject to less oscillations than a
short-term SMA [10]. However, even EMA load tracker
introduces a delay in load trend prediction when the sample
size Sn(ti) increases. ARMA and ARIMA trackers are not
suitable for cloud as they are strongly dependent on the
considered resource metrics and workload characteristics.

Andreolini [6] recommended the use of non-linear LT when
the ACF of the data trend shows high fluctuations. Lower-
order curves (degree < 3) do not react quickly to load
changes, while higher-order curves (degree > 3) are
unnecessarily complex, introduce undesired wiggles and are
computationally too expensive for a run-time context.
Based on [6], we use a cubic spline-based load tracker
LT(Sn(ti)), at time ti is defined as the cubic spline CSj(tj). It
is obtained through a subset of J control points from the
vector Sn(ti) of the load measures having dimension n. A
cubic spline function CSj(tj) based on J control points, is a
set of J − 1 piecewise third-order polynomials pj(t), where j

 [1, J − 1], satisfying the following properties [14]:

Property 1. The control points are connected through third-
order polynomials:

� ����	�� = �� � = 1, … , �
���() = ��() 	� < 	 < 	��� , � = 1, … , � � (2)

Property 2. To guarantee C2 continuity, 1st and 2nd order
derivatives of pj(t) and pj+1(t) are set equal at time tj+1.
Applying both properties leads to (where hj = tj+1 − tj):

���() = ����(− 	�)� + ��(��� −)�
6ℎ

+ �����ℎ
 − ℎ�6 ����� �	 − 	��
+ ���ℎ� − ℎ�6 ��� ��(��� −)

399

The Z coefficients are solved by setting Z0 and Zn to 0, and:

ℎ������� + 2�ℎ��� + ℎ��ℎ��� + ℎ����� = 6 ����� − ��ℎ�
− �� − ����ℎ��� �

Load trackers based on moving average models compute a
LT value at each resource measure, while the proposed LT
based on the cubic spline function returns a new value after
n resource measures. Further, CS responds well to changes
independent of resource metrics and workloads. Cubic
spline based LT provides high auto-correlation among
values, using which even simple linear predictors can
forecast the future behavior of resource load. A load
predictor LPk(Lq(ti)) takes as its input the set of q values
and returns a real number that is the predicted value at time
ti+k, where k > 0. For cloud application, an LP takes as its
input a set of LT values and returns a future LT value.
Predicted window k is the size of the prediction interval, and
the past time window q, where q is the size of LT vector
Lq(ti), distance between the 1st and last LT value.
Considering two load tracker values, the first li−q and the
last li, load predictor is the line that intersects the two points
(ti−q, li−q) and (ti, li) and returns a predicted value of the
load tracker li+k at time ti+k [6].

The above methods for load prediction are suitable for
prediction of Web-based cloud workloads over a period of
several weeks to months. In addition, it is also necessary to
predict load patterns on a daily and hourly basis in
production platforms. For example, the cloud IT Production
engineers managing a SaaS platform across global data
centers will need to know how many workloads of which
specific session type are to be expected by the hour on each
day of the week, and also by the week day over a typical
work week. Load trends over such short periods typically
do not exhibit wild fluctuations, as is the case with the
seasonal trends [6]. A load prediction algorithm based on
the generalized cubic equations such as y = a + bx + cx2 +
dx, where y is no. of session requests x is hour of the day,
was implemented for this purpose. These algorithms also
were implemented in C# .Net and integrated with the cloud
platform’s management server rule engine, for testing.

HOTSPOT DETECTION
Hotspot is an abnormally high demand on a cloud resource
over a short period of time. Hotspot level H corresponds to
the maximum capacity the platform can handle and meet the
SLA [10, 15]. Cloud traffic is experiencing a hotspot at
time t if the volume of traffic over the last Wd time slots
satisfies the condition (obtain ri from load prediction):

∑ " ≥ $ × %&
∈[*�-.,*] (3)

This means the average request rate over [t-Wd, t] is at least
H. Working with IT Production, we define ranges for a
number of load-resources measures Hn. The platform is

hotspot capable only when all of the set Hn are under control
[10]. A period of ‘Advance Notice’t is defined for each load
measure based on IT’s ability to respond the hotspot and
absorb it following a protocol of best practices. An alarm is
set if the traffic currently is in a hotspot, or if an
extrapolation of the trend of advance notices in [t-Wd, t]
shows that a hotspot will occur sometime in [t, t+tmax].
Alarm is reset if neither of the conditions is currently
satisfied [10]. Given that the diurnal, weekly and seasonal
variations in resource demand exhibit very different trends,
prediction of hotspots on the cloud platform is implemented
at 3 granular scales (hour, week, season) separately, so the
cloud IT staff can plan and respond at different time scales.

IMPLEMENTATION
Algorithms were implemented in C# .Net integrated with
the Management Server Rule engine, which is a Microsoft
Windows Work Flow (WF) based framework. In this
algorithm, input data (the actual load values available) is
first processed by a Non-linear Load Tracker module, which
uses cubic spline functions to generate a graphical trend of
the data. Using this graphical trend (which is a set of piece-
wise cubic mathematical functions, represented by model
parameters), the load values between any two actual load
points are calculated. The result is a continuous curve
representing the input data.

Load predictor takes as its input a set of load tracker values
and returns a future load tracker value. Each predictor is
characterized by a past window size. Each predictor gives
one prediction for a given future point on time line. For
example if past window is p, then predictor will take the
tracked values at T(L[l]) and T(L[l-q]) (l being the index of
last available load data),it draws a straight line joining these
two points and extrapolate this line to predict the load value
at the require d future point. Accuracy of this load predictor
depends on the past window size chosen for prediction. This
algorithm works well for near future predictions. In cloud
applications, resources are consumed on demand. Services
may go down when load suddenly increases because it is not
always possible to allocate the demanded resources to an
application. Even approximate future load estimates can
address this problem enabling better prepared service.

Class Extractinput is implemented to generate the input files
from the database, a SQL data store which is continually
populated with the cloud session request data over a period
of several weeks. The Input file contains data fields to
represent Normalized Time Unit and the Actual Load Value.
It should be noted that the ‘Actual Load Value’ is typically
the number of SaaS session requests, but can also be any of
the key cloud resource metrics such as RAM, CPU, disk
usage and network bandwidth, for example. This flexibility
is valuable for cloud capacity planning. A Model class
calculates the model parameters of cubic splines defined
over the input data [12]. A Predict class implements the

400

function for prediction over a given range of time, and is
integrated into the cloud platform’s autonomic deployment
and management framework.

User (typically a cloud IT Admin) enters window width to
define two points on time axis (L and L-W) where L is the
last actual load available and W is window width provided
by user). Then, the load prediction algorithm is applied
using the tracked values within the window to predict the
next immediate load at the required time. Additional curve
fitting routines were implemented for the prediction of
hourly and daily variation in load trends, as explained, using
the cubic equation model.

Representative load input data were obtained from [5, 6 and
8], after verifying that they are representative of typical
SaaS workloads on Runaware’s cloud platform [3]. This
platform enables SaaS-ifying Windows desktop applications
using a system virtualization layer created on the physical
(DC), a presentation virtualization layer to create remote
application sessions using Citrix Xen App/Xen Desktop, an
autonomic deployment and management middleware layer
for orchestrating the cloud workflows, and a Web interface
layer to present the SaaS apps to the end users via the
Internet, via a variety of Web 2.0 technologies, including
Adobe Flash, Java and AciveX clients. Datasets
representing hourly, daily and seasonal trends in an example
resource measure (number of session requests over time)
were adapted as inputs to the load predictions and hotspot
detection algorithms so implemented.

RESULTS AND DISCUSSION
Shown in Figure 1 is the seasonal variation in the # session
requests predicted using the 2 step Cubic Spline Load
Tracker Load Predictor Implementation. The input dataset is
based on [6]. It can be seen that the method predicts raw

Figure 1. Load prediction of SaaS sessions using the 2-
step CS method

SaaS session counts in the time (1000 – 2000) range well,
based on the load data shown in the (0 – 1000) range.
Application of this to two other data sets showed similarly
reasonable agreement. Even if the method is able to predict
future load within a 25 – 75% margin of error, it would still
be a valuable tool for capacity planning on cloud platforms
during run time, in production.

Figure 2. Load prediction of daily trends over a week

Shown in Figure 2 are the daily variations in the # session
requests predicted using the cubic equation method, and
input data reported in [5]. As expected, the number of Web
session requests on each work day (Mon – Fri) starts as low
at midnight and peaks around midday. The request count is
smaller over the week-end. Such trends can be modeled
with reasonable accuracy using the cubic equation method,
as can be seen from Fig. 2. A useful way to apply this
method is to model fit such available weekly data over
several weeks, to obtain a range of values to be expected for
the coefficients a, b and c in the cubic equation and then
obtain their mean values using regression. A reconstruction
of the cubic equation trend would then yield a representative
expected value for the load trends by day.

Figure 3. Load prediction of hourly trends over a day

Finally, shown in Figure 3 is daily variation in the # session
requests predicted using the cubic equation method as well.
Input data used in Figure 3 are from [5], collected over Web
servers. As in the case of the daily variations, the hourly
data trend over a given day can also be modeled using this
method. Regression analysis of such hourly trends over
data available from several days, for similar types of

401

workloads on the same (or similar) cloud platforms, would
be useful for constructing expected daily trends as a
guideline for capacity planning.

Application of these prediction methods to the
heterogeneous session requests among multiple tenants on a
cloud platform is implemented using a simple arithmetic
summation approach. This is feasible because,
mathematically, both the cubic spline based predictions of
the seasonal loads and the cubic equation based prediction
of hourly and daily loads are amenable to a simple
arithmetic summation, when a raw data measure trend needs
to be apportioned among the multiple measure types it is
comprised of. For example, consider M different tenants
(i.e., cloud customer orgs) - each with a particular type of
SaaS or PaaS workload (session type), all being served by
the same single cloud vendor’s platform such as the
Runaware platform. All such session requests are received
ultimately as a pool of session requests over time, which can
be directly modeled as in Fig. 1 – 3. In addition, the cloud
management server also keeps track of the number of
session requests by tenant and session type, using cookies,
tenant IDs or IP addresses. As such, prediction trends can
also be developed as shown in Fig. 1 – 3, for each session
type and tenant, which would sum to yield the global cloud
platform load predictions at any given time. These trends
are important inputs into dynamic capacity planning, which
would be very different for each session type, however. For
example, a SaaS session to IOPS and compute intensive
workloads would need high capacity VMs, unlike SaaS
sessions to email or CRM.

Limitations: These methods predict the load at points not
very far from the latest available points. For example, if
raw data measures up to time unit 2000 are available, one
can only predict up to 2005-2010 with reasonable accuracy.
Predicted value depends upon the window width chosen.
For example, if the window width is say W, the algorithm
will make use of (L to L-W) actual values to predict the load,
where L is the last actual data point available.

CONCLUSIONS

Load prediction algorithms were adopted for use on a
typical global cloud platform, by first implementing a load
tracker function to get a representative view of the load
trend from measured raw data, and then applying a load
prediction algorithm to load trends, for predicting future
resource loads under real-time constraints. Given a set of
timestamps and the corresponding loads at those
timestamps, we predict the loads at any given timestamp (in
the future), using cubic spline interpolation. This prediction
can be applied separately to the 8 different session types as
well as to a combined session count (i.e., number of Web
session requests). It is applicable to a host of other load
measures (e. g. system’s CPU, disk and memory; Network
and DB metrics etc.) A separate algorithm is developed for

hot spot prediction from the load prediction data.
Implementation is integrated into the cloud autonomic
management framework, to aid runtime decisions for
deploying prepackaged VM pools, virtual sessions and other
resources on demand, in an elastic manner. Results
indicate that the autonomic management framework is able
to respond to both synthetic and real-world load trends
accurately. This approach is suitable to support different
decision systems on cloud platforms, even for highly
variable workloads, and is characterized by a computational
complexity that is compatible to run-time decisions.

ACKNOWLEDGEMENTS
We are thankful to Ben Walters, CTO of Runaware Inc,

for his guidance and review of this work.

REFERENCES
[1] Reese, G. (2009) Cloud Application Architectures, O'Reilly, Inc.
[2] Saripalli, P. and Walters, B. (2010) “QUIRC: A Quantitative Impact

and Risk Assessment Framework for Cloud Security,” 2010 IEEE 3rd
Intl. Conf. on Cloud Computing; Miami, FL, July, 2010.

[3] Saripalli, P., Oldenburg, C., Walters, B. and Nanduri, R. (2010)
“Implementation and Usability Evaluation of A Cloud Platform for
Scientific Computing as a Service (SCaaS),” Scientific Prog. Journal,
Special Issue on Science-driven Cloud Comp (under review).

[4] A. K. Iyengar, M. S. Squillante and L. Zhang, “Analysis and
characterization of large-scale Web server access patterns and
performance,” World Wide Web, Springer, 1999.

[5] Dilley, J. A. (1996) “Web Server Workload Characterization,” HP
Report http://www.hpl.hp.com/techreports/96/HPL-96-160.html

[6] M. Andreolini, S. Casolari, Load prediction models in Web-
based systems", Proc. of First Intl. Conf. on Perf. Evaluation
Methodologies and Tools, Pisa, Italy, October 2006.

[7] J. Lacort, A. Pont, J.A Gil, J. Sahuquillo, A Comprehensive Web
Workload Characterization 2nd Intl. Working Conf. on Perf. Mod.
Eval. Heterogeneous Networks (HETNETs-04) 2004.

[8] M. Arlitt and C. Williamson, ``Internet Web Servers: Workload
Characterization and Performance Implications'', IEEE/ACM
Transactions on Networking , Vol. 5 (5), pp. 631-645, October 1997.

[9] A. Williams, M. Arlitt, C. Williamson and K. Barker, “Web
Workload Characterization: Ten Years Later,” in Web Content
Delivery: Web Information Systems Engineering and Internet
Technologies Book Series, 2005, Vol. 2, I, 3-21.

[10] Baryshnikov, Y., Coffman, E., Pierre, G., Rubenstein, D., Squillante,
M. and Yimwadsana, T. “Predictability of Web-Server Traffic
Congestion,” 10th International Workshop on Web Content Caching
and Distribution (WCW'05), Sophia Antipolis, France.

[11] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and
denial of service attacks: Characterization and implications for CDNs
and Web sites. In Proc. Intl. WWW Conference, Hawaii, May 2002.

[12] M. Andreolini, S. Casolari, M. Colajanni, M. Messori, "Dynamic load
management of virtual machines in a cloud architecture", Proc of
First Int. Conference on Cloud Computing (ICST
CLOUDCOMP2009), Munich, Germany, Oct. 2009.

[13] J. D. Hamilton. (1994) “Time Series Analysis,” Princeton University
Press.

[14] http://en.wikipedia.org/wiki/Spline_(mathematics)
visited on May 8th, 2010.

[15] S. Adler. The slashdot effect: An analysis of three
internetpublications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

402

