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ABSTRACT

Evolutionary clustering is an emerging research area ad-
dressing the problem of clustering dynamic data. An evolu-
tionary clustering should take care of two conflicting criteria:
preserving the current cluster quality and not deviating too
much from the recent history. In this paper we propose an al-
gorithm for evolutionary clustering using frequent itemsets.
A frequent itemset based approach for evolutionary cluster-
ing is natural and it automatically satisfy the two criteria
of evolutionary clustering. We provide theoretical as well as
experimental proofs to support our claims. We performed
experiments on our approach using different datasets and
the results show that our approach is comparable to most of
the existing algorithms for evolutionary clustering.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords

Evolutionary Clustering, Frequent Itemsets, Data Streams

1. INTRODUCTION

Evolutionary clustering is an emerging research area ad-
dressing the problem of clustering dynamic data. Most of
the existing clustering algorithms fail while handling such
data. Lets consider the scenario of clustering a news feed.
Hundreds of news articles get added to the data collection
every day. We need a clustering algorithm that can generate
separate clusterings at each timestamp, which at the same
time also captures the essence of the entire data. A tra-
ditional clustering algorithm might not be able to perform
such a task. An evolutionary clustering can solve such a
problem by simultaneously optimizing two conflicting prob-
lems - (i) the current clustering should be of good quality
(ii) the clustering should not deviate much from the previous
clusterings.
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Evolutionary clustering has many practical applications to
real world problems such as: finding out trends in the stock
market, blog analysis to find out community development,
social network evolution analysis, etc. When seen from a
users perspective, evolutionary clustering produces clusters
that smoothly evolve over time and hence the user will find
familiarity in everyday’s clustering. Due to such important
applications, evolutionary clustering is being considered cur-
rently as an important area of research.

At a first look, the problem of evolutionary clustering
might seem to be similar to clustering data streams [6, 1]
and incremental clustering [6, 7]. Evolutionary clustering is
similar to clustering data streams in that we deal with data
that changes over time in both places. Also, in data stream
clustering, we need to focus on optimizing time and space
constraints. But in evolutionary clustering, we focus on how
to obtain a clustering that evolves smoothly over time. On
the other hand, incremental clustering also concentrates on
computational efficiency at the cost of low cluster quality.
Also, in incremental clustering, the new clustering might not
be related to the existing clustering. This is not the case
with evolutionary clustering because it is entirely based on
the concept of maintaining the clustering over time.

A recent trend in clustering huge text data is the use of
frequent itemsets. These methods handle the high dimen-
sionality of the data by considering only the items which
are frequent for clustering. A frequent itemset is a set of
words which occur together frequently and are good can-
didates for clusters. By considering only the items which
occur frequently in the data, we can also address problems
like outlier removal, dimensionality reduction, etc. In addi-
tion to these, frequent itemsets naturally satisfies the main
features of evolutionary clustering mentioned in [3] - Consis-
tency, Noise Removal, Smoothness of Evolution and Cluster
Correspondence. We explain this in detail in Section 4.2.

2. PROBLEM DEFINITION

In this paper, we propose an algorithm for solving the
problem of evolutionary clustering using frequent itemsets.
We argue that using frequent itemsets is the best method
to solve the problem of evolutionary clustering. We prove
our argument experimentally by the results provided in Sec-
tion 6.

Let D = (D1, D2, Ds, ..., Dy) be sets of documents at dif-
ferent timestamps, where D; = (d1,d2,...,dx) is the set of
documents at timestamp t¢;. Let C; be the clustering of all
the data until timestamp t;. Now, when the data D;;+:1 ar-
rives at timstamp t; 1, our evolutionary clustering algorithm



Figure 1: Overview of our architecture

produces a clustering C;41 such that two distinct criteria are
met: the history cost must be low, meaning that the clus-
tering should not deviate much from the previous clustering
and the snapshot quality should be high, meaning that the
clustering quality should be good.

Figure 1 shows our architecture in detail. We use frequent
itemset based methods for clustering. Using frequent item-
sets for clustering stream data makes the clustering simpler
because, when we have data at a particular timestamp and
new data arrives, we just have to perform an incremental fre-
quent itemset mining to obtain the new clusters. We need
not have the entire data of the previous timestamps because
the frequent itemsets at those timestamps can be used to
represent the entire data.

Our focus here is on an online solution, that is, we do not
have information about data at time t+1 while we are at
timestamp t. Clearly we can see that a clustering produced
in an online setting may not be as good as the offline so-
lution, but solutions to real world problems need an online
approach. In the rest of the paper, we use the terms frequent
itemset, cluster and topic interchangeably.

The rest of the paper is organized as follows: Section 3
talks about the related work. Section 4 briefly describes
the background needed, Section 5 describes our approach in
detail. Section 6 presents the experiments that support our
approach. Finally we conclude our paper and present the
future work in Section 7.

3. RELATED WORK

In this section, we detail the work that has been done
in the fields of evolutionary clustering and clustering using
frequent itemsets.

Evolutionary clustering is a new research topic first for-
mulated by Chakrabarti, et al in [3]. In their work, they
developed a framework where they define the two proper-
ties of evolutionary clustering: 1. snapshot quality, which
indicates the quality of the clustering at the current times-
tamp; 2. history cost which ensures that the clusters evolve
smoothly over time. The framework attempts to combine
these two properties and achieve a good clustering. They
developed two algorithms based on this framework: evo-
lutionary k-means and evolutionary hierarchical clustering.
For each of these algorithms, they define functions for snap-
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shot quality and history cost.

Another recent work in evolutionary clustering was by
Chi, et al [4] in which they propose an evolutionary spectral
clustering approach by including the parameter temporal
smoothness to solve the problem. They used the temporal
smoothness parameter to achieve a clustering that evolves
smoothly with time. Based on this, they proposed two algo-
rithms PCQ(Preserving Cluster Quality) and PCM(Preserving
Cluster Membership). These two algorithms try to incor-
porate clustering history information into traditional algo-
rithms like spectral clustering, k-means, hierarchical cluster-
ing, etc. In PCQ, the current partition is applied to historic
data and the resulting cluster quality is defined as the tem-
poral cost(history cost). In PCM, the current partition is
compared to the historic partition and the resulting differ-
ence determines the history cost. But this paper has a major
draw back that they assume that the number of clusters re-
main constant over time. For many cases in an evolutionary
clustering scenario, this assumption is violated.

Xu, et al [11] propose a statistical solution to the prob-
lem of evolutionary clustering. They use Dirchlet process
to model the evolutionary change of the clusters over time.
They propose two approaches to solve the problem: DPChain
and HDP-EVO. DPChain is based on Dirchlet Process Model,
in which the cluster mixture proportion information at dif-
ferent times is used to reflect the smooth cluster change over
the time. HDP-EVO is based on the Hierarchical Dirchlet
Model, which uses a hierarchy of clusters to address the clus-
ter correspondence issue in order to solve the evolutionary
clustering problem.

The most recent work in this area is by Xu, et al [12]
which combines Hierarchical Dirchlet Process used above
in [11] and Hierarchical Transition Matrix based on Infinite
Hierarchical Hidden Markov State model to bring out an
effective solution to the problem of evolutionary clustering.

In recent times research is being done on clustering us-
ing frequent itemsets. This type of clustering is different
from traditional clustering algorithms in that it uses only
the frequent words for clustering. Frequent Term based
Clustering (HFTC) [2] has been the first algorithm in this
regard. But HFTC was not scalable and Fung, et al came
up with Hierarchical Document Clustering using Frequent
itemsets(FIHC) [5] which outperforms HFTC. It provides a
hierarchical clustering with labels to the clusters. Some of
the drawbacks of FIHC include (i)using all the frequent item-
sets to get the clustering (number of frequent itemsets may
be very large and redundant) (ii) Not comparable with previ-
ous methods like UPGMA (Unweighted Pair Group Method
with Arithmetic Mean) [8] and Bisecting K-means [14] in
terms of clustering quality. (iii) Use hard clustering (each
document can belong to at most one cluster), etc. Then Yu,
et al came up with a much more efficient algorithm using
closed frequent itemsets for clustering (TDC) [13]. They
also provide a method for estimating the support correctly.
But they use closed itemsets which also may be redundant.
Recently Hasan H Malik, et al. proposed Hierarchical Clus-
tering using Closed Interesting Itemsets(HCCI) [9], which
is the current state of the art algorithm in clustering us-
ing frequent itemsets. In this, they introduce the notion of
closed interesting itemsets to be those itemsets which are in-
teresting based on certain interestingness measures like Chi-
Square, Cosine, Gini Index, etc.



4. BACKGROUND

In this section, we try to establish the background required
for our work.

4.1 Frequent itemset based document cluster-
ing

Intuitively, the document clustering problem is to cluster
text documents by using the idea that similar documents
share many common keywords. Keywords in documents are
treated as items and the documents (being treated as sets of
keywords) are analogous to transactions in a market-basket
dataset. This forms a transaction space, that we refer to
as doc-space as illustrated below, where the d;’s are docu-
ments and w;;’s are keywords.

d1 — w11, wo1, w31, wai, ... ]

d2 — [wiz2, wa2, w32, Wa2, ... ]

ds — [wis, w23, w33, W43, - - -]

Then, in this doc-space, frequent combinations of key-
words (i.e., frequent itemsets) that are common to a group
of documents convey that those documents are similar to
each other and thereby help in defining clusters. e.g: if
(a,b,c) is a frequent itemset of keywords, then (di,ds,ds)
which are the documents that contain these keywords form
a cluster. We refer to the set of documents containing a
frequent itemset as the doc-list of that frequent itemset.

Consider data at a timestamp ¢;. Applying frequent item-
set mining algorithm on that data, let FS(i) be the set of
frequent itemsets. Let doc(i) be the set of documents cor-
responding to the i*" frequent itemset in FS(i). Using the
justification provided above, we consider every such set of
documents (doc(i)) thus obtained as an initial cluster. But
with this method, there are a lot of overlaps between clus-
ters, i.e. a single document can belong to multiple frequent
itemsets and thus can belong to multiple clusters. To reduce
the overlaps between clusters, we use the score function sim-
ilar to that proposed by Yu, et al in [13]

Score(d,T) = (d x t) / length(T) (1)

teT

where d X t denotes the tf-idf score of each word ¢ in T,
the frequent itemset in document d.

Using Eqn. 1, we calculate the score of a document in a
cluster and assign a document to the cluster with the high-
est score. In order to allow a document to belong to mul-
tiple clusters, we put a user given threshold (MAX_DUP)
and assign each document to atmost MAX_DUP number of
clusters. Thus we have the clusters at a timestamp t(i).

4.2 Why we use frequent itemsets for evolu-
tionary clustering

Generally any frequent itemset must satisfy one of the
following criteria. Let F be the frequent itemset.

(i) Support(F) <« Min_sup

(ii) Support(F) ~ Min_sup

(iii) Support(F) > Min_sup

, where Min sup is the minimum support threshold for
frequent itemset mining. In case (i), the frequent itemset
does not have a support greater than minimum support and
so is of no importance. In case (iii), the frequent itemset
has a large support, so even if there are minor variations
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in the support of that frequent itemset over time, the clus-
tering is not much affected. The frequent itemsets in case
(ii) are of importance because they play an important role
in changing the clustering significantly. But in our case,
since each document belongs to only those frequent item-
sets(clusters) in which it has the highest score, the number
of documents contained in these frequent itemsets will be
very small because the documents will already be present
in those frequent itemsets in case (iii)(because they have a
higher supports, and hence higher scores). Thus, most of
such frequent itemsets become empty and hence do not ef-
fect the clustering.

Now, we try to explain how frequent itemsets automati-
cally handles the four main features of evolutionary cluster-
ing defined in [3] - Consistency, Noise Removal, Smoothess
of evolution and Cluster correspondence.

Consistency - The clustering at any timestamp should be
consistent with the clustering at a previous timestamp, i.e.
the clustering should not change drastically with time. In
our case, when data at a new timestamp gets added to the
existing data, there will not be much change in the existing
frequent itemsets and the number of frequent itemsets that
are newly added is very small. e.g. If (a,b,c) is an existing
frequent itemset, the chance of (a,b,c) becoming (a,b,c,d) is
more than an entirely new itemset (x,y,z) becoming frequent.
Even if such new frequent itemsets appear, they fall into
case(ii) explained above. So the effect of such new frequent
itemsets on the clusters will not be significant. Since the
frequent itemsets do not change much, the clustering will be
consistent.

Noise Removal - Our method automatically takes care of
noise because the noise containing documents will not be
frequent. So, there is no chance of them being added to our
clusters.

Smoothness of evolution - If the clusters shift over time,
evolutionary clustering must represent this change. Using
frequent itemsets, if there is a smooth shift in the clusters
over time, the support of such documents increases grad-
ually and reaches the minimum support level, when it be-
comes frequent and gets added to the set of clusters. Hence,
smoothness is guaranteed by using frequent itemsets.

Cluster Correspondence - In an evolutionary clustering,
one of the most difficult and challenging issues is to solve
the correspondence problem. The correspondence problem
refers to finding a correspondence between clusters of the
current timestamp and the previous timestamp due to the
evolution of the clustering. In our case, as described in
the case of consistency, the frequent itemsets do not change
much and so it is easy to find a frequent itemset in the cur-
rent timestamp corresponding to one in the previous times-
tamp.

S. OUR APPROACH

In this section, we describe our approach in detail. Fig-
ure 1 explains our approach. At an initial timestamp t;,
we use the approach described in Section 4.1 to cluster the
documents to get the initial clusters C;. Now, when data
at the next timestamp(t;+1) arrives, we use an incremental
frequent itemset algorithm to update the frequent itemsets
and thus obtain the clusters(Ciy1).

5.1 Incremental frequent itemset mining

At timestamp t;+1, when a new document set arrives, we



apply an incremental frequent itemset mining algorithm on
the frequent itemsets at the previous timestamp and the
current data to obtain the new frequent itemsets of the entire
data. As explained above in Section 4.1, each of the newly
obtained frequent itemset is a potential cluster.

Here four cases may arise:

1. An itemset which was frequent earlier becomes infre-
quent now and there exists a cluster corresponding to
that itemset in the previous clustering (timestamp).

2. A new frequent itemset being created.

3. A frequent itemset in the previous timestamp remain-
ing frequent currently too, but a document in an older
cluster might have a higher score for a new cluster than
the older one.

4. An itemset which was infrequent previously remains
infrequent.

We leave out the last case as we are not interested in in-
frequent itemsets and concentrate on the remaining three
cases.

e When a frequent itemset becomes infrequent, we com-
pute the scores of each document in the doc-list of
this frequent itemset with the newly obtained frequent
itemsets and reassign each document to MAX_DUP
clusters for which the document has the highest score.
We then reduce the overlapping between clusters us-
ing Eqn. 1. If none of the documents remain in the
cluster, we prune the cluster.

e When a new frequent itemset gets created, for each
document in its doc-list we compute the score with all
the other frequent itemsets it belongs to. This also
contains the case where a document in an older clus-
ter might have a higher score for a newly obtained
cluster(case 3 above). This problem is automatically
solved by our approach, because when we compute the
score of an older document with a new one, we assign
it to the newer one if its score is higher.

After resolving the above issues, we obtain the updated clus-
ters at timestamp ¢;11. Now we compute the Snapshot qual-
ity of these updated clusters:

Snapshot quality: We define the snapshot quality at
any timestamp to be the quality of the clustering indicated
by general measures like F-Score [14], NMI(Normalized Mu-
tual Information) [10], etc.

Using the clusterings C; and C;41, we compute the history
cost as follows:

History Cost: History cost indicates the deviation of the
current clustering from the previous clustering. To measure
the history cost, we define the following function:

Let f : [k] — [k] be the function which maps the clustering
at t; to the clustering at t;11, i.e. we match each frequent
itemset in C; with the best frequent itemset in Ciy1 using
the function f. For each c* € Ci+1, we find the corresponding
d® e ¢y using the function f. Then, we compute the doc-
list of each of these frequent itemsets. Let A and B be the
two doc-lists for two frequent itemsets ¢; € C; and c;+1 €
Ci4+1 respectively. We compute the set S’ = (A-B) U (B-A).
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Here, S’ represents the change in the documents between
the corresponding clusters.
Now, the history cost is defined as,

he(es, civ1) = Z (Score(s,T))

seS’

(2)

where Score(s,T) indicates the scores of documents in their
respective frequent itemsets calculated using Eqn. 1 and T
is defined as follows: if s € ¢;, T = cit1, else if s € ¢,
T = Cj.

Now, the total history cost at timestamp t;+1 is defined

>

c;€Ci,¢;41€C 41

6. EXPERIMENTAL EVALUATION

In this section we detail the various experiments we have
done to prove the validity of our approach. We compare
our approach with evolutionary k-means and other recent
approaches for evolutionary clustering using various metrics
like F-Score [14] and NMI [10].

To evaluate our algorithm on cluster quality and compare
it with different algorithms, we used 2 famous datasets - (i)
Reuters 21578 dataset *, (ii) 20 News Group Dataset . We
applied general preprocessing techniques like stop word re-
moval, stemming, etc on all the documents in these datasets.
For calculating NMI and F-score using the 20 News Group
dataset, we used the same method used in [11] for select-
ing the documents - we selected 10 topics from the dataset
(comp.graphics, rec.autos, rec.sport.baseball, sci.crypt,
sci.electronics, sci.med, sci.space, soc.religion.christian,
alt.atheism, talk.politics.mideast) with each having 100 doc-
uments. To simulate 5 different timestamps, we divided
the data into 5 parts, each having 20 documents randomly
selected from these clusters. For calculating F-Score on
Reuters dataset, we divided the dataset into 5 parts ran-
domly to indicate 5 different timestamps. We clustered the
documents at each timestamp using evolutionay k-means
and our algorithm and computed the F-Score. The results
for this are shown in Table 2. For computing the history
cost in Figure 3, we divided the 20 News Group dataset into
10 timestamps in the same way described above.

Tables 1 and 2 show that our method outperforms evo-
lutionary k-means on both the datasets. Also, as time pro-
gresses, the variation in F-score(cluster quality) of our method
is very low when compared to evolutionary k-means. This
indicates that our algorithm achieves smoothness of evolu-
tion. Also, we can see from Table 2 that the values of F-score
for k-means is fluctuating badly. We suspect this might be
due to noise or unimportant topics being introduced in the
new timestamps. But our method handles these variations
smoothly and produces smooth clusters which can be seen
from minute variations in the F-score.

Figure 2 compares our method with other recent meth-
ods for evolutionary clustering based on NMI performance.
We can see that our method performs better than PCQ and
PCM [4] and comparable to DPChain and HDPEVO [11].
This is a very satisfying result because, as shown in Sec-
tion 4.2 our method is best suited for solving the problem of
evolutionary clustering and also achieves consistent results.

"http://kdd.ics.uci.edu/databases /reuters21578
http://kdd.ics.uci.edu/databases/20newsgroups

HC(Cs,Cir) = (3)

hC(Ci, Ci+1)




Figure 2: Comparison of NMI performance of dif-
ferent algorithms on 20 News Group dataset

Table 1: Comparison of F-Score on 20 News Group
dataset

Timestamp | Evolutionary K Means | Ours
1 0.57 0.72
2 0.42 0.62
3 0.33 0.60
4 0.29 0.56
5 0.17 0.53

Figure 3 shows a graph of history cost plotted against
time. We can see that as time progresses the history cost al-
most remains constant. This is also an indication of smooth-
ness of evolution of our clusters.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we provided a method to perform evolu-
tionary clustering using frequent itemsets. We also showed
that using frequent itemsets for evolutionary clustering is
quite natural and would lead to good results. Our results
in Section 6 show that our method is comparable to the
recent methods in evolutionary clustering [11] and much
better than the traditional approaches like evolutionary k-
means [3].

Using closed and generalized frequent itemsets for cluster-

Table 2: Comparison of F-Score on Reuters-21578
dataset

Timestamp | Evolutionary K Means | Ours
1 0.448 0.801
2 0.372 0.797
3 0.556 0.784
4 0.412 0.778
5 0.525 0.787

29

Figure 3: History Cost vs. Time for 20 News Group
dataset

ing might help us reduce the dimensionality even more. We
plan to look into how these methods help us with improv-
ing the quality of the evolutionary clustering. We also plan
to use external knowledge sources like Wikipedia, WordNet,
etc to enhance the document representations so as to achieve
better clustering quality and lower history cost.
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